

General Operating, Maintenance and Reference Manual

ACE Model J54-7
Cooler Serial Number: 1721903

Table of Contents

Introduction	3
Safety	3
Receipt and Unloading of Equipment	4
Site Orientation	5
Pre-Start Up Check and Inspection	6
Hydrostatic Test	6
Bearings and Lubrication	6
Fans	6
Louvers	7
V-Belts	7
Vibration Switch(es)	7
Cooler Start-Up	7
Routine Maintenance	8
Bearing Lubrication	8
Belt Tension	8
Tube Cleaning	8
Header Plug Leaks	8-9
Tube Rolling	9
Appendices	

Introduction

The purpose of this manual is to provide recommendations for the receipt, operation, and maintenance of cooler. Adherence to the general guidelines provided herein will help to ensure optimal mechanical and thermal performance over a maximized lifetime of the cooler.

As with any engineered product, any questions regarding the cooler not addressed within this manual should be posed to Alfa Laval Inc. – Air Cooled Exchangers, or through a qualified ACE representative. Assumptions regarding startup, operation or maintenance should not be made, as air-cooled heat exchangers can be hazardous in nature if general precautions are not observed.

Safety

It is imperative that a safety plan is established and observed prior to the operation of air-cooled heat exchangers. Safety guidelines are provided below, but it's the ultimate responsibility of the end user to observe any and all safety precautions as outlined by operating company's safety plan.

1. Always wear the proper personal protective equipment (PPE) when in the area of the air-cooled exchanger.
2. Never remove guards or protective equipment while the air-cooled exchanger is in operation. An established lock-out/tag-out procedure is preferred prior to any maintenance or removal of guarding.
3. Disconnect electric fan motor(s) or disable engine ignition systems (disconnect battery) prior to performing maintenance, especially maintenance involving the cooler fan(s).
4. Avoid "hot work" without obtaining a hot work permit or observing the operating company's policy thereof.
5. Use good, conservative and safe judgment when lifting cooler components.
6. Isolate, blow-down, vent, or purge gas sections prior to performing maintenance or work on the sections according to the operating company's procedures.
7. Use tools and lifting devices suitably rated for the work and subject components.
8. Use OEM parts provided by Alfa Laval Inc. – Air Cooled Exchangers to avoid any deviation from the design and operation intent, which could result in an unsafe operating condition.

Receipt and Unloading of Cooler

Thoroughly inspect the air-cooled exchanger for damage incurred during transit or transfer between logistics equipment (trailers, vessels, etc.). The following items, if applicable, should be inspected closely:

1. Skid
2. Exposed structure
3. Sheet metal panels
4. Fan and tube section (bundle) guards
5. Electric motors
6. Louvers
7. Tube sections, including tubes, fins, headers, and especially flange faces
8. Lubrication lines
9. Controls, electric or pneumatic

Promptly note any damage on the bill of lading and present to the responsible party, who is typically the carrier, to ensure expedited filing of claims.

Review the packing list to ensure that any spare parts or items shipped loosed due to dimensional or weight restrictions are accounted for. These items may be found apart from the cooler, attached to the cooler skid/base, or inside of the cooler plenum. Assembly instructions accompany coolers requiring any assembly prior to operation. Contact ACE if additional instructions or guidance are needed.

Equipment Unloading and Handling

The air-cooled exchanger is to be lifted and unloaded using only lifting devices certified for the weight of the cooler. Unless designed otherwise, ACE lifting lugs are intended for straight vertical lifts. Therefore, any lifting plan that would result in bending of the lug(s) should not be used. Lifting plans are available from ACE upon request.

Site Orientation

Installation and site orientation of the cooler are the sole responsibility of the purchaser, end user or contractor. Air-cooled heat exchangers must be placed with careful consideration given to surrounding objects, which may impede air-flow into the fan(s). The cooler must be placed at a suitable distance from other coolers and/or heat sources to avoid potential warm-air recirculation and degradation of cooler performance.

To mitigate air-flow starvation and recirculation issues when placing air-cooled heat exchangers adjacent to each other, the coolers may be elevated using piers or leg extensions. The height of elevation is specified such that air-flow “area” eliminated from the blocked sides is compensated for as height added to the cooler ends. Contact ACE for recommendations, if needed.

Coolers with vertically-oriented fans are sensitive to wind direction, and should be placed such that the prevailing winds at the site flow towards (into) the backside of the fan. Coolers with fans forced to move air against the prevailing winds will likely experience less than desirable thermal performance, as well as an increased fan blade load and driver horsepower.

Pre-Start Up Check and Inspection

Prior to the beginning of any start-up procedure, a thorough inspection of the Air Cooled Exchanger should be made.

- 1.) Ensure that all bolted connections are properly tightened.
- 2.) After tube bundle and piping hydro-test, remove hydro-test connections. Be sure tube bundle is properly drained, and if required, dried. Connect process piping and any auxiliary connections.
- 3.) Inspect all process and auxiliary connections to ensure that they are plugged or connected properly.
- 4.) Check mechanical equipment before initiating and process through the tube bundle(s).
 - a.) Thoroughly check the plenum and fan drive area to be sure all tools and construction materials are removed.
 - b.) Rotate the fan by hand and check fan tip clearance and alignment of belts and sheaves.
 - c.) If applicable, check V-belt tension using the manufacturer's recommendations.
 - d.) Check all fan drive bolts to be sure they are properly tightened. This includes bearing bolts, fan and sheave bushing bolts, set screws, motor bolts and fan blade attachment bolts.
 - e.) If air operated auto-variable pitch fans are used, check for proper pitch with the air off. Fans may go to either minimum or maximum pitch at air failure. Check specifications for requirements. If fan pitch is not satisfactory, set the pitch per manufacturer's instructions. If fan pitch is satisfactory, cycle the fan through its range, using plant air and an air regulator.
 - f.) If air operated louvers are provided, it is advisable to disconnect the air motor linkage and cycle the louvers by hand to assure there is no binding or obstruction of the louvers blades. If binding occurs, check to be sure louver frames are square. Attaching bolts may need to be loosened and frames shifted to ease binding. If louvers

operate smoothly, reconnect air motor. Cycle the air motor, using plant air and an air regulator.

- g.) If manually adjusted pitch fans are provided, check fan pitch and re-pitch per manufacturer's instructions if required.
- h.) If manual operated louvers are provided, check for binding of the blades, as in instruction (f). Operate louvers to be sure there is no linkage obstruction or binding.
- i.) Remove condensate drain plugs, if provided, from electric motors and other electrical components to drain any condensation that might have occurred during storage. If space heaters are furnished in electric motors, louver actuators, controls, etc., activate the space heaters and allow approximately 24 hours before starting equipment.
- j.) After all the applicable steps previously stated are completed; the mechanical equipment may be cycled. Be sure all personnel and equipment are away from the fan and fan drive area. For safety reasons, equipment guards should be installed. Activate the drive motor(s) and allow it/them to achieve rated speed. Check for vibration and excessive noise. If vibration or excessive noise exists, immediately shut motor down, and check for loose connections or insufficient clearance between moving parts. If the system is running smoothly, replace any guards removed and move to the next drive and repeat above steps.

5.) This equipment shall not be operated at any time without safety relief device in the system. Ensure that each heat exchanger section has appropriate relieving capacity and a set pressure not to exceed the stamped MAWP.

6.) Start the process through the tube bundle(s). Open the inlet valves slowly to ensure gradual warming of the tube bundles. This will allow the components of the tube bundle to expand slowly and lessen the thermal shock.

Routine Maintenance

Bearing Lubrication

Bearings should be greased in accordance with the bearing manufacturer's recommendations. Over-lubrication is the most common cause of bearing failure.

Belt Tension

V-belt drives should be adjusted until tight enough to prevent excessive belt slippage. A general rule of thumb is to tighten the belt until it can only be twisted one-quarter of a turn with the thumb and fore-finger. Follow the belt manufacturer's tensioning recommendations for a precise method.

Fin Cleaning

Operating conditions sometimes cause an accumulation of dirt on the outside fin surface. This can be removed by directing compressed air, or a greaseless solvent followed by a water spray through the fins in a direction opposite the normal air flow. The inside of the tubes will require periodic inspection and cleaning as necessary. Removal of access plugs allows visual inspection, and if necessary, the use of mechanical tube cleaners.

Plug Leaks

Plugs are not sacrificial and may be re-used if not damaged. It is sound practice to mark plugs as they are removed and install removed plugs into the same holes. This is particularly useful if the possibility exists of an oversize plug having been used following the repair of a threaded hole.

ACE uses two different types of plugs in ASME code headers. Tapered plugs are used opposite 5/8" through 1" tubes unless specified otherwise by the customer. Shoulder plugs are used opposite 1.25" and 1.5" tubes, or when specified by the customer. In non-code sections, NPT plugs are used almost exclusively. Tightening requirements are dependent upon plug size and can vary with the plug material.

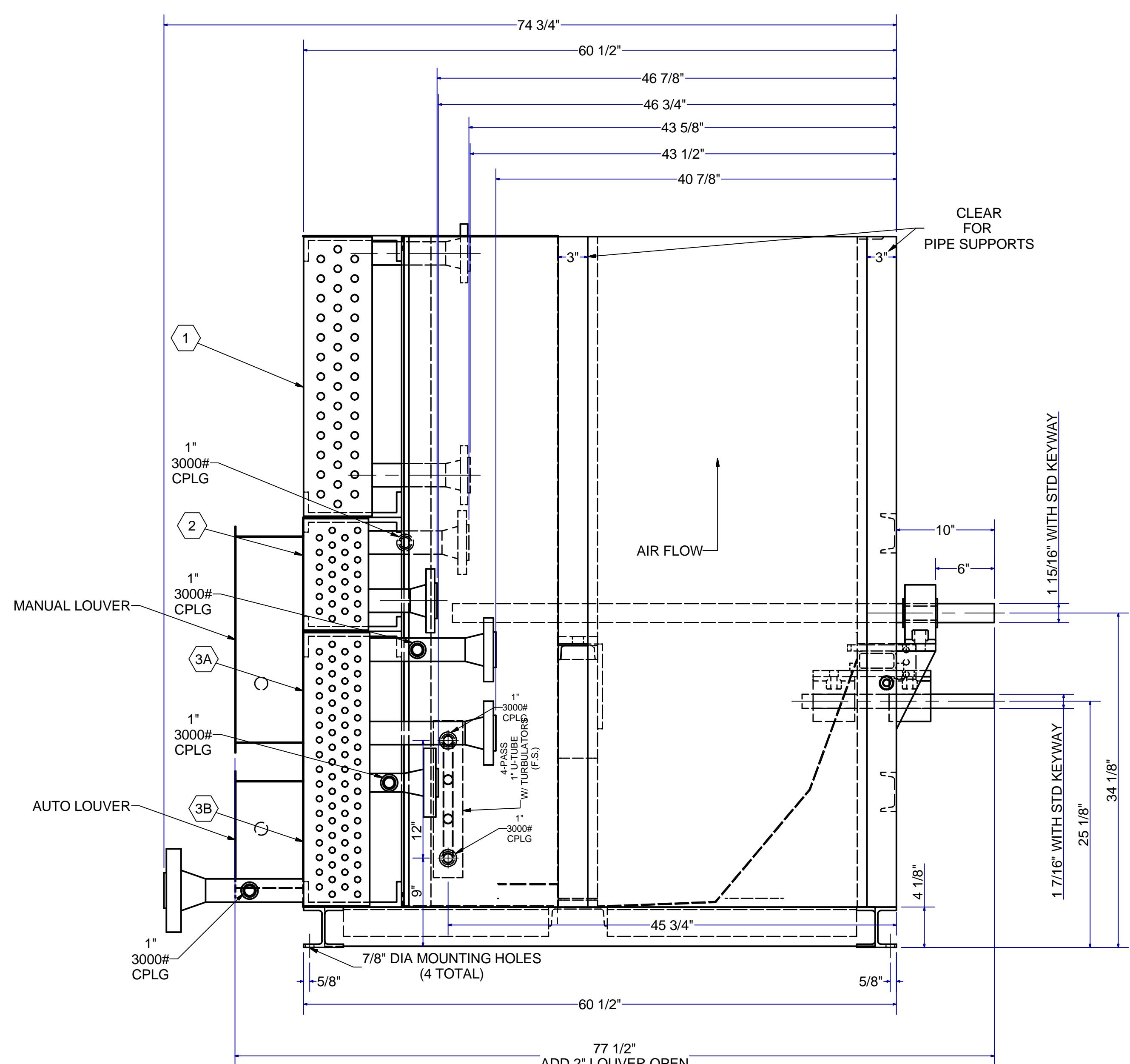
Tapered Plug Tightening Procedure

There is no standardized method of tightening an NPT threaded joint. Torque is not a good measure of how tight to make the joint, because the quality of the threads affects the friction between the two thread surfaces. Also, most threaded joints are assembled with a thread sealant, either liquid or tape, and the type of sealant can affect the friction between the mating threads. ACE uses a liquid thread sealant in conjunction with an impact wrench which initially tightens nominally-sized plugs to about 200 ft-lbs. The plugs are tightened further as required to stop leakage, if any exists.

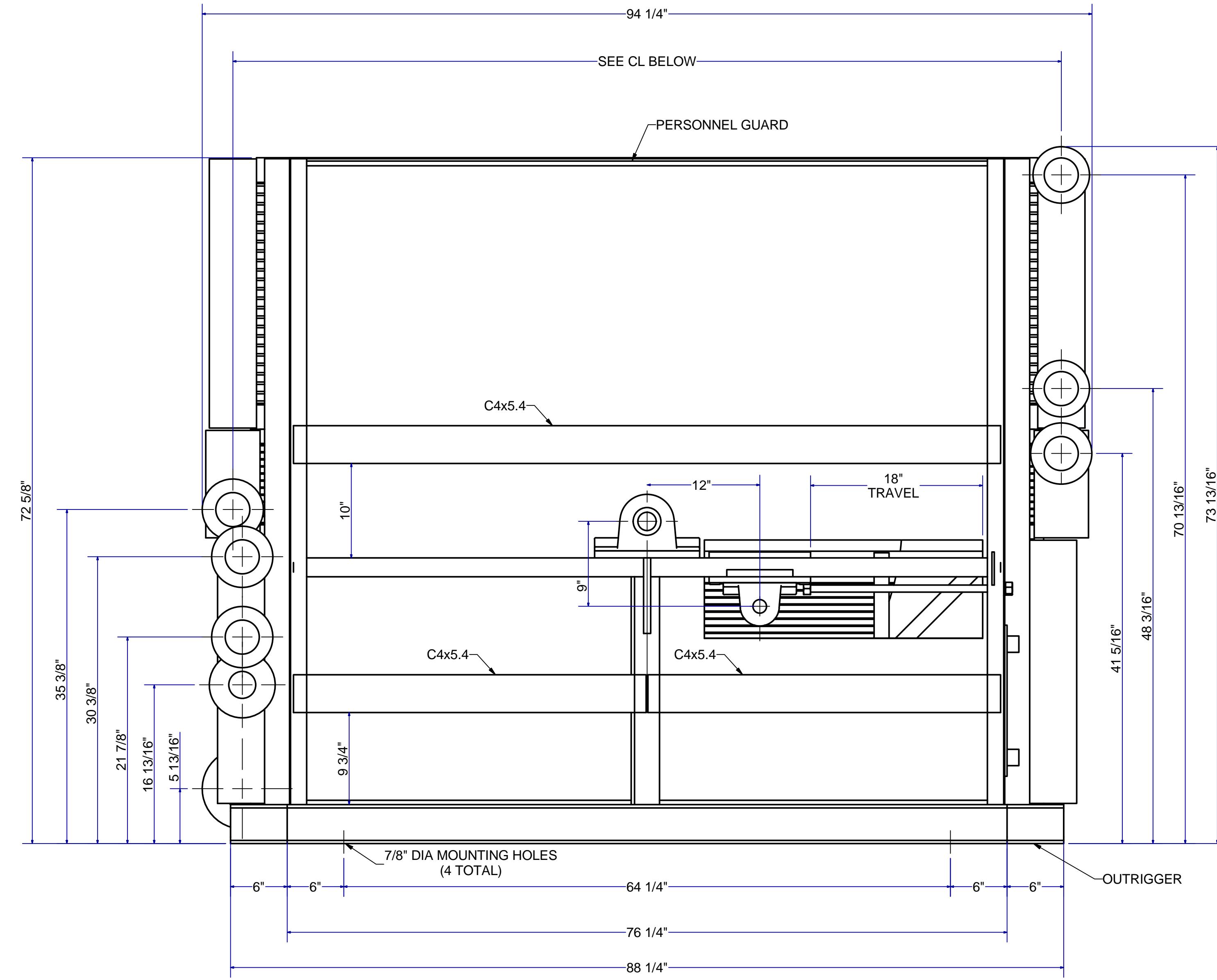
CAUTION: *If using Teflon tape, it is easy to over-tighten the joint, particularly if you are working on an aluminum or brass tube sheet. Aluminum or brass tube sheets may develop cracks between plug holes if plugs are over-tightened. If the plugs and headers are stainless steel, make sure to use a thread sealant approved for use with SS, and limit the torque to only that required to stop leaks, as this material is very susceptible to galling.*

Shoulder Plugs

Shoulder plugs can be torqued to a set value, but since the goal of tightening the joint is to eliminate leaks, it is a good idea to torque to a lower value to start with, and then increase the torque if necessary until the gasket seals. Contact ACE prior to the tightening or removal of shoulder plugs for assistance specific to the air cooled heat exchanger in question.


TUBE LEAKS

Tube Wall Leaks


A leak originating from a tube wall (typically from corrosion) is a problem solved best by isolating the tube from the media being cooled through the use of tapered seal pins. It's important to note that removing tubes from service will result in a loss of cooling capacity. Sealing multiple tubes will eventually affect the cooling capability of the cooler to the point of which the deficiency is noticeable due to high outlet temperature or elevated pressure drop. When the reduced performance of the section can no longer be tolerated, the section must be re-tubed. As cooler sections may vary greatly in size and construction, please contact ACE directly for seal-pin and re-tube applications.

Tube/Tube Sheet Joint Leaks

A leak that originates from the joint between the tube outside diameter of the tube and the tube sheet may be eliminated by re-rolling the subject tube using a tube expander. Though a refundable deposit is typically required, ACE routinely loans expanding tools and instructions to service personnel, such that they can repair the leak in a timely manner. As cooler sections may vary greatly in size and construction, please contact ACE directly regarding tube expansion applications.

SIDE ELEVATION

SHAFT END ELEVATION

SEE CL BELOW - THESE DIMENSION(S) ARE SYMETRICAL
ABOUT THE CENTER OF COOLER.

NOTES

1. WEIGHT: 3803 POUNDS
2. FINISH: ACE std prep. w/ one coat ACE std primer
3. FAN DRIVEN BY V-Belt Drive By Others
4. ASME CODE WITH NATIONAL BOARD ON IC1, IC2, AC,
5. PERSONNEL GUARD,

"The 2015 Edition of ASME Section VIII, Div 1 requires hydrostatic testing of headers/sections prior to coating application. However, ACE's standard practice requires that the initial application of header coating precedes hydrostatic testing. Through the approval of this drawing, you (the customer) acknowledge and approve of this deviation from current ASME Section VIII, Div 1 requirements."

AIR COOLED EXCHANGERS										SCALE: 1:1 (FIT TO PLOT)	DRAWN BY: AID			
FLAG	SERVICE	CL	LOUVERS	DESIGN PRESSURE	DESIGN TEMPERATURE	NOZZLES IN	NOZZLES OUT	OTHER NOZZLE	NC	DATE: 10/4/2017				
										CUSTOMER: McClung Energy	P.O: 0014949-01			
1	EJW	87.75	N/A	100 PSI	350 Deg F/20 Deg F	(1)2-150RF	(1)2-150RF	N/A	N/A	BY	DATE	DESCRIPTION	CK'D	
2	IC1	87.75	AUTO	645 PSI	350 Deg F/20 Deg F	(1)2-300RF	(1)2-300RF	N/A	N/A	REV 1	MK	10/31/17	LOUVERS	DRAWING NUMBER
3A	IC2	85.75	MANUAL	1287 PSI	350 Deg F/20 Deg F	(1)2-600RF	(1)2-600RF	N/A	N/A	REV 2		12/4/17	LOUVERS	REV
3B	AC	85.75	MANUAL	1800 PSI	350 Deg F/20 Deg F	(1)1.5-900RF	(1)2-900RF	N/A	N/A					17219 -C 2

COOLER PERFORMANCE SPECIFICATION IS SHOWN FOR ONE BAY. (1) BAYS REQUIRED

CUSTOMER	McClung Energy	PROPOSAL NUMBER	17219R1.dat
REFERENCE	Standard J54-7(CAT 3306 NA 145HP 10.5:1 STD 1800 rpm)	DATE	10/26/2017
MODEL	J54-7	PAGE	1

PERFORMANCE OF ONE UNIT

SERVICE	EJW	IC1	IC2	AC
FLOW	45.0GPM	0.75MMSCFD	1.21MMSCFD	0.81MMSCFD
FLUID	50%GLY	.65	.65	.65
TEMPERATURE IN F	190.0	264.0	254.0	254.0
TEMPERATURE OUT F	164.2	130.0	130.0	120.0
INLET PRESSURE PSIG		203.60	707.28	810.00
PRESSURE LOSS PSI	3.79	3.92	3.80	5.00
DUTY, BTU/HR	515520.0	121393.2	191315.2	141118.9
CORRECTED MTD, F	48.3	57.5	51.8	45.0
OVER-ALL U BTU/(hr*sqft*F)	201.5	73.5	98.3	83.6
FOULING	0.000500	0.002000	0.002000	0.002000
BARE SURFACE FT2	53	29	38	38
TOTAL SURFACE FT2	1267	457	597	597

CONSTRUCTION

NO. SECTIONS	1	1	COMBINED	COMBINED
NO. TUBES/SECTION	40	26	34	34
TUBE LENGTH FEET	7.0	7.0	7.0	7.0
NO. ROWS	3	4	4	4
NO. PASSES	4	3	4	6
COUNTERFLOW				
TUBE OD INCH AND BWG	.75X16BWG	.625X16BWG	.625X16BWG	.625X16BWG
TUBE MATERIAL	SA214(WLD)	SA214(WLD)	SA214(WLD)	SA214(WLD)
DESIGN PRESSURE	100.00	645.00	1287.00	1800.00
DESIGN TEMPERATURE	350/-20	350/-20	350/-20	350/-20
NOZZLES-INLET	2-150RF	2-300RF	2-600RF	1.5-900RF
NOZZLES-OUTLET	2-150RF	2-300RF	2-600RF	2-900RF
HEADER TYPE	RECT TUBE	BOX W/PLUGS	BOX W/PLUGS	BOX W/PLUGS
HEADER MATERIAL	STEEL	SA-516-70	SA-516-70 NORM	SA-516-70 NORM
ASME CODE STAMP		YES	YES	YES
GROOVED TUBE SHEET		YES		YES
HEADER CORROSION INCH	0.000	0.000	0.000	0.000
PLUGS, TYPE	TAPER	TAPER	TAPER	TAPER
PLUGS, MATERIAL	STEEL	SA-105	SA-105	SA-105
TURBULATORS				
ACCELERATORS				
LOUVER CONTROL		MANUAL	MANUAL	(1) JOHNSON 3153-5 W/T12 TC
STRESS RELIEVE	NONE	NO	NO	NO
NDE				
ADDITIONAL CODES				
CANADIAN REGISTRATION				
ADDITIONAL COUPLINGS		1	1	2
BYPASS NOZZLE				
FINS	HYPERR L-FOOT	HYPERR L-FOOT	HYPERR L-FOOT	HYPERR L-FOOT

AIR DATA

INLET AIR TEMPERATURE	105.0	ELEVATION FEET:	1500
OUTLET AIR TEMPERATURE	141.1	AIR FLOW SCFM:	24739

MECHANICAL EQUIPMENT

NO FANS	1	HP PER FAN:	7.0	RPM	849	FAN DIA INCH:	54
FAN	CROWLEY 7WL	FAN MATERIAL	PAG	NUM BLADES	6	PITCH	37°
V-Belt Drive By Others							TSP, INCH WC:
DRAFT TYPE	INDUCED						0.721
WEIGHT LB:	3852	WIDTH FEET:	7.7	LENGTH FEET:	6.8	HEIGHT FEET:	6.5
ACCESSORIES		Personnel Guard Over Air Discharge					
FINISH	ACE std prep. w/ one coat	ACE std primer					
SPECNOTES							

ACE does not offer metallurgical advisement. Please confirm material suitability for both process and atmospheric conditions.

Alfa Laval Inc.
 Air Cooled Exchangers
 Recommended Spare Parts

ACE Job Number: 1721901-11
ACE Cooler Model: J54-7
Customer: McClung Energy

Pricing shown below is effective as of 2/21/2018, and is subject to change without notice. Contact your ACE sales representative prior to order placement for up-to-date pricing and availability.

Description	Recommended Quantity (Per Cooler)	Price, Each	Extended Price
Fan, Crowley Model 54/6-6/37/PAG/7WL/6.09, , 6 Blades Pitched at 37 Degrees (2/3 R), 4.50 ft diameter	1	\$967.50	\$967.50
Fan Shaft, 1.9375" Dia x 55.30" L, Keyway L x W x D, 7.00" X 0.5000" X 0.2500"	1	\$522.00	\$522.00
Idler Shaft, 1.4375" Dia x 18.00" L, Keyway L x W x D, 7.00" X 0.3750" X 0.1875"	1	\$15.22	\$15.22
Fan Bearing PN PU331N, 1.9375" Diameter	2	\$238.45	\$476.90
Idler Bearing PN PPCL223N, 1.4375" Diameter	1	\$474.75	\$474.75
Service IC1 Code Type Taper Plug For .625" O.D. Tube Carbon Steel	2	\$1.31	\$2.62
Service IC2 Code Type Taper Plug For .625" O.D. Tube Carbon Steel	3	\$1.31	\$3.93
Service AC Code Type Taper Plug For .625" O.D. Tube Carbon Steel	3	\$1.31	\$3.93
Service EJW Non-Code Type Taper Plug for .750" O.D. Tube Carbon Steel	4	\$1.48	\$5.92
Air Motor , JOHNSON 3153-5	1	\$689.29	\$689.29

FORM U-1A MANUFACTURER'S DATA REPORT FOR PRESSURE VESSELS

(Alternative Form for Single Chamber, Completely Shop or Field Fabricated Vessels Only)

As Required by the Provisions of the ASME Boiler and Pressure Vessel Code Rules, Section VIII, Division 1

1. Manufactured and certified by	Alfa Laval, Inc., 1201 South 9th St., Broken Arrow, Oklahoma 74012 (Name and address of Manufacturer)						
2. Manufactured for	McClung Energy, 234 Johnny Clark Rd., Longview, TX 75603 (Name and address of Purchaser)						
3. Location of installation	Unknown, USA (Name and address)						
4. Type	Vertical (Horizontal or vertical, tank)	1721903-2 (Manufacturer's serial number)	Not Req'd (CRN)	17219-H2 (Drawing number)	15831 (National Board number)	2018 (Year built)	
5. ASME Code, Section VIII, Division 1	2015		None		None		
6. Shell	SA-516-70 (Material spec. number, grade)	0.875 in. (Nominal thickness)	0 (Corrosion allowance)	5.375 in. (Inner diameter)	11.375 in. (Length (overall))		

Body Flanges on Shells											
No.	Type	ID	OD	Flange Thk	Min Hub Thk	Material	How Attached	Location	Bolting		
									Num & Size	Bolting Material	Washer (OD, ID, thk)
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

7. Seams	Single Bevel (Long. (wld'd, dbl., sngl., lap, butt))	N.A.	N.A.	N.A.	N/A	N.A.	N.A.	N.A.	N.A.	N.A.	
		[R.T. (spot or full)]	(Eff. %)		(H.T. temp.)		(Time, hr)	[Girth (wld'd, dbl., sngl., lap, butt)]	[R.T. (spot or full)]	(Eff. %)	(No. of courses)

8. Heads: (a) Material	SA-516-70 (Spec. no., grade)	(b) Material	SA-516-70 (Spec. no., grade)
------------------------	---------------------------------	--------------	---------------------------------

Location (Top, Bottom, Ends)	Minimum Thickness	Corrosion Allowance	Crown Radius	Knuckle Radius	Elliptical Ratio	Conical Apex Angle	Hemispherical Radius	Flat Diameter	Side to Pressure (Convex or Concave)
(a) Top/Bottom	0.5.875 in.	0	N.A.	N.A.	N.A.	N.A.	N.A.	4 in.	N.A.
(b) Ends	0.5 in.	0	N.A.	N.A.	N.A.	N.A.	N.A.	4 in.	N.A.

Body Flanges on Heads											
	Location	Type	ID	OD	Flange Thk	Min Hub Thk	Material	How Attached	Bolting		
									Num & Size	Bolting Material	Washer (OD, ID, thk)
(a)	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
(b)											

9. MAWP	645 psig (Internal)	N.A. (External)	at max. temp.	350 deg F (Internal)	N.A. (External)
---------	------------------------	--------------------	---------------	-------------------------	--------------------

Min. design metal temp. -20 deg F at 645 psig. Hydrostatic test pressure: 839 psig

Proof test N/A

10. Nozzles, inspection, and safety valve openings:

Purpose (Inlet, Outlet, Drain etc.)	No.	Diameter or Size	Type	Material		Nozzle Thickness	Reinforcement Material	Attachment Details		Location (Insp. Open.)
				Nozzle	Flange			Nozzle	Flange	
Inlet/Outlet Nozzle	2	2 In.	Pipe	SA-106-GR B	N.A.	.218 in.	0	Mat'l&Weld	UW16.1(a)	N.A.
Inlet/Outlet Flange	2	2 In.	RFWN	N.A.	SA-105	300RF	N.A.	Mat'l&Weld	N.A.	Welded
Auxiliary	1	1 In.	Cplg		N.A.	3000#	0	Mat'l&Weld	Welded	N.A.

11. Supports: Skirt	No (Yes or no)	Lugs (Number)	0	Legs (Number)	4	Other	N/A (Describe)	Attached	Tubesheet/Welded (Where and how)
---------------------	-------------------	------------------	---	------------------	---	-------	-------------------	----------	-------------------------------------

12. Remarks: Manufacturer's Partial Data Reports properly identified and signed by Commissioned Inspectors have been furnished for the following items of the report:	See Next Line
---	---------------

(Name of part, item number, Manufacturer's name and identifying stamp)

Constructed in conformance with Appendix 28. IMPACT EXEMPT PER UG-20(f). Section Volume = 0.6 cubic feet.

Tubes: (26) SA214(WLD) x 0.625 in. OD x 0.06 in. MW x 7 ft. Long, Straight Type

Plugs: (52) SA-105 Taper Plugs

NDE: N/A

FORM U-1A (Back)

CERTIFICATE OF SHOP/FIELD COMPLIANCE

We certify that the statements made in this report are correct and that all details of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization Number 7616
expires 4/30/2020

Date 2-20-18 Co. name Alfa Laval, Inc. Signed Dan J. Stant
(Manufacturer) (Representative)

CERTIFICATE OF SHOP/FIELD INSPECTION

Vessel constructed by Alfa Laval, Inc. at 1201 S. 9th St. Broken Arrow, OK 74012

I, the undersigned, holding a valid commission issued by the National Board of Boiler and Pressure Vessel Inspectors and employed by
OneCIS Insurance Co., Lynn, Mass.

have inspected the component described in this Manufacturer's Data Report on 2-20-18, and state that, to the best
of my knowledge and belief, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE,
Section VIII, Division 1. By signing this certificate neither the inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure
vessel described in this Manufacturer's Data Report. Furthermore, neither the Inspector nor his/her employer shall be liable in any manner for any personal
injury or property damage or a loss of any kind arising from or connected with this inspection.

Date 2-20-18 Signed Dan J. Stant Commissions NR-8432
(Authorized Inspector) (National Board (Incl. endorsements))

(07/13)

FORM U-1A MANUFACTURER'S DATA REPORT FOR PRESSURE VESSELS

(Alternative Form for Single Chamber, Completely Shop or Field Fabricated Vessels Only)

As Required by the Provisions of the ASME Boiler and Pressure Vessel Code Rules, Section VIII, Division 1

1. Manufactured and certified by	Alfa Laval, Inc., 1201 South 9th St., Broken Arrow, Oklahoma 74012 (Name and address of Manufacturer)						
2. Manufactured for	McClung Energy, 234 Johnny Clark Rd., Longview, TX 75603 (Name and address of Purchaser)						
3. Location of installation	Unknown, USA (Name and address)						
4. Type	Vertical (Horizontal or vertical, tank)	1721903-3A (Manufacturer's serial number)	Not Req'd (CRN)	17219-H3 (Drawing number)	15832 (National Board number)	2018 (Year built)	
5. ASME Code, Section VIII, Division 1	2015		None		None		
6. Shell	SA-516-70 NORM (Material spec. number, grade)	1.625 (Nominal thickness)	0 (Corrosion allowance)	5.250 in. (Inner diameter)	27.875 in. (Length (overall))		

Body Flanges on Shells											
No.	Type	ID	OD	Flange Thk	Min Hub Thk	Material	How Attached	Location	Bolting		
									Num & Size	Bolting Material	Washer (OD, ID, thk)
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

7. Seams	Single Bevel [Long. (wid'd, dbl., sngl., lap, butt)]	N.A.	N.A.	N.A.	N/A	N.A.	N.A.	N.A.	N.A.	N.A.
		[R.T. (spot or full)]	[Eff., %]	[H.T. temp.]	[Time, hr]	[Girth (wid'd, dbl., sngl., lap, butt)]	[R.T. (spot or full)]	[Eff., %]	[No. of courses]	

8. Heads: (a) Material	SA-516-70 NORM (Spec. no., grade)	(b) Material	SA-516-70 NORM (Spec. no., grade)
------------------------	--------------------------------------	--------------	--------------------------------------

Location (Top, Bottom, Ends)	Minimum Thickness	Corrosion Allowance	Crown Radius	Knuckle Radius	Elliptical Ratio	Conical Apex Angle	Hemispherical Radius	Flat Diameter	Side to Pressure (Convex or Concave)
(a) Top/Bottom	1.625 in.	0	N.A.	N.A.	N.A.	N.A.	N.A.	2 in.	N.A.
(b) Ends	0.625 in.	0	N.A.	N.A.	N.A.	N.A.	N.A.	2 in.	N.A.

Body Flanges on Heads											
	Location	Type	ID	OD	Flange Thk	Min Hub Thk	Material	How Attached	Bolting		
									Num & Size	Bolting Material	Washer (OD, ID, thk)
(a)	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
(b)											

9. MAWP	1287 psig (Internal)	N.A. (External)	at max. temp.	350 deg F (Internal)	N.A. (External)
---------	-------------------------	--------------------	---------------	-------------------------	--------------------

Min. design metal temp. 20 deg F at 1287 psig Hydrostatic test pressure: 1673 psig

Proof test N/A

10. Nozzles, inspection, and safety valve openings:

Purpose (Inlet, Outlet, Drain etc.)	No.	Diameter or Size	Type	Material		Nozzle Thickness	Reinforcement Material	Attachment Details		Location (Insp. Open.)
				Nozzle	Flange			Nozzle	Flange	
Inlet/Outlet Nozzle	2	2 In.	Pipe	SA-106-GR B	N.A.	0.218	0	Mat'l&Weld	UW16.1(a)	N.A.
Inlet/Outlet Flange	2	2 In.	RFWN	N.A.	SA-105	600RF	N.A.	Mat'l&Weld	N.A.	Welded
Auxiliary	1	1 In.	Cplg	SA-105	N.A.	3000#	0	Mat'l&Weld	Welded	N.A.

11. Supports: Skirt	No (Yes or no)	Lugs (Number)	0	Legs (Number)	4	Other	N/A	Attached	Tubesheet/Welded
---------------------	-------------------	------------------	---	------------------	---	-------	-----	----------	------------------

12. Remarks: Manufacturer's Partial Data Reports properly identified and signed by Commissioned Inspectors have been furnished for the following items of the report: See Next Line

(Name of part, item number, Manufacturer's name and identifying stamp)

Constructed in conformance with Appendix 28. IMPACT EXEMPT PER UCS-66 Curve D(f). Section Volume = 0.6 cubic feet.

Tubes: (34) SA214(WLD) x 0.625 in. OD x 0.06 in. MW x 7 ft. Long, Straight Type

Plugs: (68) SA-105 Taper Plugs

NDE: N/A

FORM U-1A (Back)

CERTIFICATE OF SHOP/FIELD COMPLIANCE

We certify that the statements made in this report are correct and that all details of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization Number 7616

expires 4/30/2020

Date 2-20-18 Co. name

Alfa Laval, Inc.

(Manufacturer)

Signed

(Representative)

CERTIFICATE OF SHOP/FIELD INSPECTION

Vessel constructed by Alfa Laval, Inc. at 1201 S. 9th St. Broken Arrow, OK 74012

I, the undersigned, holding a valid commission issued by the National Board of Boiler and Pressure Vessel Inspectors and employed by OneCIS Insurance Co., Lynn, Mass.

have inspected the component described in this Manufacturer's Data Report on 2-20-18, and state that, to the best of my knowledge and belief, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this certificate neither the inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel described in this Manufacturer's Data Report. Furthermore, neither the Inspector nor his/her employer shall be liable in any manner for any personal injury or property damage or a loss of any kind arising from or connected with this inspection.

Date 2-20-18 Signed Al Q. Stark

(Authorized Inspector)

Commissions

08.8432

[National Board (Incl. endorsements)]

(07/13)

FORM U-1A MANUFACTURER'S DATA REPORT FOR PRESSURE VESSELS

(Alternative Form for Single Chamber, Completely Shop or Field Fabricated Vessels Only)

As Required by the Provisions of the ASME Boiler and Pressure Vessel Code Rules, Section VIII, Division 1

1. Manufactured and certified by	Alfa Laval, Inc., 1201 South 9th St., Broken Arrow, Oklahoma 74012 (Name and address of Manufacturer)				
2. Manufactured for	McClung Energy, 234 Johnny Clark Rd., Longview, TX 75603 (Name and address of Purchaser)				
3. Location of installation	Unknown, USA (Name and address)				
4. Type	Vertical (Horizontal or vertical, tank)	1721903-3B (Manufacturer's serial number)	Not Req'd (CRN)	17219-H3 (Drawing number)	15833 (National Board number)
5. ASME Code, Section VIII, Division 1	2015 (Edition and Addenda, if applicable (date))		None (Code Case numbers)		None (Special service per UG-120(d))
6. Shell	SA-516-70 NORM (Material spec. number, grade)	1.625 in. (Nominal thickness)	0 (Corrosion allowance)	5.250 in. (Inner diameter)	27.875 in. (Length (overall))

Body Flanges on Shells											
No.	Type	ID	OD	Flange Thk	Min Hub Thk	Material	How Attached	Location	Bolting		
									Num & Size	Bolting Material	Washer (OD, ID, thk)
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

7. Seams	Single Bevel [Long. (wid'd, dbl., singl., lap, butt)]	N.A.	N.A.	N.A.	N/A	N.A.	N.A.	N.A.	N.A.	N.A.
		[R.T. (spot or full)]	(Eff, %)	(H.T. temp.)	(Time, hr)	[Girth (wid'd, dbl., singl., lap, butt)]	[R.T. (spot or full)]	(Eff, %)	(No. of courses)	

8. Heads: (a) Material	SA-516-70 NORM (Spec. no., grade)	(b) Material	SA-516-70 NORM (Spec. no., grade)
------------------------	--------------------------------------	--------------	--------------------------------------

Location (Top, Bottom, Ends)	Minimum Thickness	Corrosion Allowance	Crown Radius	Knuckle Radius	Elliptical Ratio	Conical Apex Angle	Hemispherical Radius	Flat Diameter	Side to Pressure (Convex or Concave)
(a) Top/Bottom	1.625 in.	0	N.A.	N.A.	N.A.	N.A.	N.A.	2 in.	N.A.
(b) Ends	0.625 in.	0	N.A.	N.A.	N.A.	N.A.	N.A.	2 in.	N.A.

Body Flanges on Heads											
Location	Type	ID	OD	Flange Thk	Min Hub Thk	Material	How Attached	Bolting			
								Num & Size	Bolting Material	Washer (OD, ID, thk)	Washer Material
(a) N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
(b)											

9. MAWP	1800 psig (Internal)	N.A. (External)	at max. temp.	350 deg F (Internal)	N.A. (External)
---------	-------------------------	--------------------	---------------	-------------------------	--------------------

Min. design metal temp. -20 deg F at 1800 psig Hydrostatic test pressure: 2340 psig

Proof test N/A

10. Nozzles, inspection, and safety valve openings:

Purpose (Inlet, Outlet, Drain etc.)	No.	Diameter or Size	Type	Material			Nozzle Thickness Nom. Corr.	Reinforcement Material	Attachment Details		Location (Insp. Open.)
				Nozzle	Flange	Nom.	Corr.		Nozzle	Flange	
Inlet Nozzle	1	1.5 in.	Pipe	SA-106-GR B	N.A.	0.2	0	Mat'l&Weld	UW16.1(a)	N.A.	N.A.
Inlet Flange	1	1.5 in.	RFWN	N.A.	SA-105	900RF	N.A.	Mat'l&Weld	N.A.	Welded	N.A.
Outlet Nozzle	1	2 in.	Pipe	SA-106-GR B	N.A.	0.218	0	Mat'l&Weld	UW16.1(a)	N.A.	N.A.
Outlet Flange	1	2 in.	RFWN	N.A.	SA-105	900RF	N.A.	Mat'l&Weld	N.A.	Welded	N.A.
Auxiliary	2	1 in.	Cplg	SA-105	N.A.	3000#	0	Mat'l&Weld	Welded	N.A.	N.A.

11. Supports: Skirt	No (Yes or no)	Lugs	0 (Number)	Legs	4 (Number)	Other	N/A (Describe)	Attached	Tubesheet/Welded (Where and how)
---------------------	-------------------	------	---------------	------	---------------	-------	-------------------	----------	-------------------------------------

12. Remarks: Manufacturer's Partial Data Reports properly identified and signed by Commissioned Inspectors have been furnished for the following items of the report: See Next Line

(Name of part, item number, Manufacturer's name and identifying stamp)

Constructed in conformance with Appendix 28. IMPACT EXEMPT PER UCS-66 Curve D(f). Section Volume = 0.5 cubic feet.

Tubes: (34) SA214(WLD) x 0.625 in. OD x 0.06 in. MW x 7 ft. Long, Straight Type

Plugs: (68) SA-105 Taper Plugs

NDE: N/A

FORM U-1A (Back)

CERTIFICATE OF SHOP/FIELD COMPLIANCE

We certify that the statements made in this report are correct and that all details of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization Number 7616
expires 4/30/2020

Date 2-20-18 Co. name Alfa Laval, Inc. Signed Ramsey
(Manufacturer) (Representative)

CERTIFICATE OF SHOP/FIELD INSPECTION

Vessel constructed by Alfa Laval, Inc. at 1201 S. 9th St. Broken Arrow, OK 74012

I, the undersigned, holding a valid commission issued by the National Board of Boiler and Pressure Vessel Inspectors and employed by
OneCIS Insurance Co., Lynn, Mass.

have inspected the component described in this Manufacturer's Data Report on 2-20-18, and state that, to the best
of my knowledge and belief, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE,
Section VIII, Division 1. By signing this certificate neither the inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure
vessel described in this Manufacturer's Data Report. Furthermore, neither the Inspector nor his/her employer shall be liable in any manner for any personal
injury or property damage or a loss of any kind arising from or connected with this inspection.

Date 2-20-18 Signed A. G. Start Commissions NB-8432
(Authorized Inspector) (National Board (Incl. endorsements))

(07/13)

NB# 15831

ALFA LAVAL INC.

INSPECTOR'S PRODUCTION FLOW CHECKLIST

JOB NO. 1701903-2

ITEM	EXAMINATION		INSPECTION		REMARKS
	QCI	DATE	AI	DATE	
DRAWINGS	Q1	16-23-17	DoS	22-24-17	
WELD PROC.	Q1	/	/	/	
PLATE THICKNESS	Q1	21-18			
MATERIAL CHECK	/	/			
EDGE PREP.	/	/			
FIT UP (ALL PLATES)	Q1	2-3-18	DoS	2-6-18	x
WELDING: T-W *	/	/	/	/	/
P-W *	/	/	/	/	/
T-E *	/	/	/	/	/
P-E *	/	/	/	/	/
NOZ	/	/	/	/	/
RT	NA				
UT	/				
PT	Q1	2-1-18			
MT	NA				
HT	/				
HYDRO	Q1	2-20-18	DoS	2-20-18	/
STAMP NP	/	/	/	/	/
NP RUB	/	/	/	/	/
NP ATTACHED	/	/	/	/	/
PAINT	/	/	/	/	/
MANUFACTURER'S DATA REPORT					

KEY:

- 1.) T-W* IS TUBE SHEET TO WRAPPER
- 2.) P-W* IS PLUG SHEET TO WRAPPER
- 3.) T-E* IS TUBE SHEET TO END PLATE
- 4.) P-W* IS PLUG SHEET TO WRAPPER

SIGNED

QUALITY CONTROL MANAGER

DATE

202018

NB# 15832

ALFA LAVAL INC.

INSPECTOR'S PRODUCTION FLOW CHECKLIST

JOB NO. 1701903-3A

ITEM	EXAMINATION		INSPECTION		REMARKS
	QCI	DATE	AI	DATE	
DRAWINGS	Q1	16/23/17	Pass	10/24/17	
WELD PROC.	Q1	1	C	5	
PLATE THICKNESS	Q1	2-1-18			
MATERIAL CHECK	1	1			
EDGE PREP.	1	1			
FIT UP (ALL PLATES)	Q1	2-3-18	Pass	2-6-18 ✓	
WELDING: T-W *	1	1	1	1	
P-W *					
T-E *					
P-E *					
NOZ					
RT	NA				
UT	1				
PT	Q1	2-1-18			
MT	NA				
HT					
HYDRO	Q1	2-20-18	Pass	2-20-18 ✓	
STAMP NP	C		1	1	
NP RUB	C		1	1	
NP ATTACHED					
PAINT					
MANUFACTURER'S DATA REPORT					

KEY:

- 1.) T-W* IS TUBE SHEET TO WRAPPER
- 2.) P-W* IS PLUG SHEET TO WRAPPER
- 3.) T-E* IS TUBE SHEET TO END PLATE
- 4.) P-E* IS PLUG SHEET TO WRAPPER

SIGNED

QUALITY CONTROL MANAGER

2-20-18

NB# 1583

ALFA LAVAL INC.

INSPECTOR'S PRODUCTION FLOW CHECKLIST

JOB NO. 1721903-3B

ITEM	EXAMINATION		INSPECTION		REMARKS
	QCI	DATE	AI	DATE	
DRAWINGS	Q1	10-23-17	Q05	10-24-17	
WELD PROC.	Q1		5	5	
PLATE THICKNESS	Q1	2-1-18			
MATERIAL CHECK					
EDGE PREP.					
FIT UP (ALL PLATES)	Q1	2-3-18	Q05	2-4-18	✓
WELDING: T-W *					
P-W *					
T-E *					
P-E *					
NOZ					
RT	NA				
UT	1				
PT	Q1	2-1-18			
MT	NA				
HT					
HYDRO	Q1	2-20-18	Q1	2-20-18	✓
STAMP NP					
NP RUB	S				
NP ATTACHED	S				
PAINT	S				
MANUFACTURER'S DATA REPORT					

KEY:

- 1.) T-W* IS TUBE SHEET TO WRAPPER
- 2.) P-W* IS PLUG SHEET TO WRAPPER
- 3.) T-E* IS TUBE SHEET TO END PLATE
- 4.) P-W* IS PLUG SHEET TO WRAPPER

SIGNED Dan QUALITY CONTROL MANAGER
DATE 2-20-18

MATERIAL TRACEABILITY RECORD

PLATE _____ TUBES _____ BY Alfa Laval DATE 2/13/18 JOB NO. 17219-03

SERIAL NO. SERVICE	MATERIAL DESCRIPTION	HEAT OR CERTIFICATION NO. Alfa Laval Inc. I.D. NUMBER
(2)	1. 2" 300RF X H SA-105 2. 2" X H SA-106-GRB	B 8990 (TF0)
	3.	
(3A)	1. 2" 600RF, X H, SA, 105 2. 2" X H SA-106-GRB	605086H (TF0)
	3.	
(3B)	1. 5" 900, RF, X H, SA-105 2. 5" X H SA-106-GRB 3. 2" 900, RF, X H, SA-105 4. 2" X H SA 106-GRB	B0597 (TF0) 207590A (TF1)
	2.	
	3.	
	1.	
	2.	
	3.	

TES:

MATERIAL TRACEABILITY RECORD

PLATE TUBES BY PT DATE 2-7-18 JOB NO. 1721903

SERIAL NO. SERVICE	MATERIAL DESCRIPTION	HEAT OR CERTIFICATION NO. Alfa Laval Inc. I.D. NUMBER	
		1	2
② BK	1. SA - S16 - 70 $\frac{7}{8}$	SL152N	
FR	2. SA - S16 - 70 $\frac{1}{2}$	NU397N	
	3. SA - S16 - 70 $\frac{1}{2}$	NU343N	
	1.		
	2.		
	3.		
	1.		
	2.		
	3.		
	1.		
	2.		
	3.		

ES:

MATERIAL TRACEABILITY RECORD

PE PLATE TUBES BY R.B.J. DATE 2-5-18 JOB NO. 1721903

SERIAL NO. SERVICE	MATERIAL DESCRIPTION	HEAT OR CERTIFICATION NO. Alfa Laval Inc. I.D. NUMBER	
1.			
2.			
3.			
1.			
2.			
3.			
3	1. SA-516-70 Norm	15/8"	M755N
	2. SA-516-70 Norm	5/8"	NU390N
	3.		
	1.		
	2.		
	3.		

OTES:

MATERIAL TRACEABILITY RECORD

PIPE _____ PLATE _____ TUBES BY PETER DATE 2-15-18 JOB NO. 1721903

SERIAL NO. SERVICE	MATERIAL DESCRIPTION	HEAT OR CERTIFICATION NO. Alfa Laval Inc. I.D. NUMBER
1. E JW	3/4 x 7'-0" SA214 060	WA709419 WEBCO
2.		
3.		
2. IC1	5/8 x 7'-0" SA214 060	WA711201 WEBCO
2.		
3.		
3. IC2	5/8 x 7'-0" SA214 060	WA711201 WEBCO
2.		
3.		
4. AC	5/8 x 7'-0" SA214 060	WA711201 WEBCO
2.		
3.		
5.	1.	
	2.	
	3.	

NOTES:

voestalpine Tubulars GmbH & Co KG

Alpinestrasse 17
8652 Kindberg-Aumuehl
T. +43/050304/23-0
F. +43/050304/63-532
www.voestalpine.com/tubulars

Legal Structure: Limited Partnership
Location: Kindberg/Austria
Company Registry Number 165400k
Commercial Court of Leoben
DPR 0592684, VAT Nr. ATU 43630408

General Partner: voestalpine Tubulars GmbH
Legal Structure: Limited Liability Company
Location: Linz, Company Registry Number 106933f
Commercial Court of Linz

FSVAT2XHPSL2

MILL TEST CERTIFICATE 3.1

(according to EN 10204)

ABNAHMEPRUEFZEUGNIS 3.1

(gem. EN 10204)

CERTIFICAT DE CONTROLE DES PRODUITS PAR L'USINE 3.1

(selon EN 10204)

Hersteller:
Manufacturer:
Producteur:

voestalpine Tubulars GmbH & Co KG, Austria

Besteller:
Purchaser:
Archeteur:

VOEST-ALPINE TUBULAR CORPORATION
HOUSTON, TEXAS 77077, US
INDUSTRIAL PIPING SPECIALISTS, INC.
TULSA OK 74158-1270, US

Pruefgegenstand:
Object of tests:
Eprouvette:

Line Pipe
LP-USA-02-PSL2
LINEPIPE-01.0
non upset ends (API-5-L) - non upset
UV coating

Werkstoff:
Material:
Matières:

GRADE B / GRADE BN / GRADE X42N / GRADE C

Anforderungen:
Requirements:
Exigence:

Grade B acc. to ASTM A 53 / A 53M-2012
ASME SA 53-2015
Grade B acc. to ASTM A 106 / A 106M-2015,
ASME SA 106-2015
GRADE BN / X42N acc. to API 5 L, 45.edt.-2012 (PSL2)
NACE MR 0175 / ISO 15156-2015
NACE MR 0103-2015
LINEPIPE-01.0; LP-USA-02-PSL2

Ausführung:
Condition:
Cond. de livraison:

NU, PLAIN END, PE, both ends bevelled acc. to API/ASTM (30°)

Wärmebehandlung:
Heat treatment:
Traitement de chaleur:

NORMALIZED ROLLED

Coupl.die stamped:
Coupl.paint stencilling:
Coupl.Colour coding:

Fully painted: Bands:

Tube die stamped:
Tube paint stencilling:

va SPEC 5L-0033 "API" 06.2017 2.375" x 0.218" BN/X42N PSL2 SMLS 2970 PSI Length FT Heat No. Lot No. A/SA 53
Grade B S A/SA 106 Grade B Sched.80 PO# HR0745145 MADE IN AUSTRIA

Tube Colour coding:
Label:
Remarks:

Fully painted: Bands: purple
PO No.: HR074514, DAT Port of Houston, TX
*) Grade C without marking on tubes
*) SI units have been converted to US customary units
*) (Nb+V) <= 0,06%

Auftrags-Nr.: 23534 / 5
Our works order No.:
No usine:

Bestelln.: HR074514/VATC PO#
Your order No.: 702631

No de la commande:

Zelchen des Lieferwerks: va
Marking of producer:
Marque du fabricant:
Erschmelzungsart: BOF
Melting process:
Procédé d'élaboration:

Carbon Pipe.
2" x 11 SA53
Ht=1017395445

RECEIVED

JAN 24 2018

C180077 Stock.
PO # _____ JOB # _____
Bm.

Kindberg, 21.07.2017

Page 1 of 9

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig/
Inspection certificate has been signed digitally and is
valid without an original signature

No. 134199

voestalpine Tubulars GmbH & Co KG
Qualitätsstelle / Quality Department

WEITZER

Abnahmbeauftragter
authorized inspection representative
représentant autorisé du contrôle

voestalpine

ONE STEP AHEAD.

voestalpine Tubulars GmbH & Co KG**Umfang der Lieferung / Volume of delivery / Contenu de la livraison:**

Versandanzeige: Dispatch advlce No. Avis d'expédition:	Pos.: Pos.:	Abmessung: Dimension: Dimension:	Bundnr.: Bundle No.: Nombre Fret:	Stückzahl: Number Of: Pièces:	Länge: Length: Longueur:	Gewicht: Weight: Poids:	Los: Lot: Lot:
	5	2,375 in x 0,218 in; 5,02 lbs/ft SCHE.D.80		1-61	2318	99266,925 ft	225443,50 kg

Volume of delivery

Heat	Lot	Remark
1017395101	216622	AD 01
1017395448	216620	AD 01
1017395447	216621	AD 01
1017395446	216624	AD 01
1017395445	216623	AD 01

Kindberg, 21.07.2017

Page 2 of 9

No. 134199

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig/
Inspection certificate has been signed digitally and is
valid without an original signature

voestalpine Tubulars GmbH & Co KG
Qualitätsstelle / Quality Department

WEITZER
Abnahmbeauftragter
authorized inspection representative
représentant autorisé du contrôle

voestalpine
ONE STEP AHEAD.

voestalpine Tubulars GmbH & Co KG

Additional tests and inspections performed on pipe

- 1 Biegeversuch/Bend test: bestanden/passed
- 2 Dimensionalkontrolle/ Dimensional Inspection: bestanden/passed
- 3 Streuflussprüfung/Diverted flux acc. API 5 L (old version - SR 4) OD + ID, longitudinal 12.5 %: bestanden/passed
- 4 Streuflussprüfung gem. ASTM E570/Flux leakage testing acc. to ASTM E570: bestanden/passed
- 5 Ultraschallprüfung gem. Norm (Wanddicke - 100 % Umfang)/Ultrasonic inspection acc. to standard (wallthickness - 100 % circumference): bestanden/passed
- 6 Visuelle Inspektion/Visual Inspection: bestanden/passed
- 7 Wasserinnendruckversuch/Hydrostatic test: bestanden/passed, Mindestprüfdruck/min test pressure: 2970 PSI, min.Haltezeit/min duration: 5 sec

Test remarks

Wir bestätigen, dass die gelieferten Erzeugnisse den Anforderungen der Bestellung entsprechen.
We hereby certify that the goods delivered are in compliance with the requirements of the order.

Kindberg, 21.07.2017

Page 3 of 9

No. 134199

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig/
Inspection certificate has been signed digitally and is
valid without an original signature

voestalpine Tubulars GmbH & Co KG
Qualitätsstelle / Quality Department

WEITZER
Abnahmbeauftragter
authorized inspection representative
représentant autorisé du contrôle

voestalpine

ONE STEP AHEAD.

voestalpine Tubulars GmbH & Co KG

Tensile testing

Lot No	Test Type	Heat treatment	Loc. Temp	Specimen	Yield Strength		Tensile Strength	Elong. gage- length	Reduct. R/Rm in area			
					[°F]	No. Type	Pipe Dimension [inch]	[PSI]	[PSI]	[%]	[%]	
								Requ. from	42061	60190	22.00	
								Requ. to	71793	94999	0.93	
216620	AD01	Standard	normalized rolled	Rear 68 1	Strip-long	0.76 x 0.22	Rt0.50	53954	75999	30.90	2	0.71
216620	AD01	Standard	normalized rolled	Rear 68 2	Strip-long	0.75 x 0.22	Rt0.50	54679	76144	30.70	2	0.72
216621	AD01	Standard	normalized rolled	Rear 68 1	Strip-long	0.75 x 0.22	Rt0.50	52503	75129	31.20	2	0.70
216621	AD01	Standard	normalized rolled	Rear 68 2	Strip-long	0.75 x 0.22	Rt0.50	53809	76144	31.80	2	0.71
216622	AD01	Standard	normalized rolled	Rear 68 1	Strip-long	0.75 x 0.22	Rt0.50	54389	77015	31.00	2	0.71
216622	AD01	Standard	normalized rolled	Rear 68 2	Strip-long	0.75 x 0.22	Rt0.50	53664	76579	30.50	2	0.70
216623	AD01	Standard	normalized rolled	Rear 68 1	Strip-long	0.75 x 0.23	Rt0.50	50038	72663	31.50	2	0.69
216623	AD01	Standard	normalized rolled	Rear 68 2	Strip-long	0.75 x 0.22	Rt0.50	52213	75274	30.70	2	0.89
216624	AD01	Standard	normalized rolled	Rear 68 1	Strip-long	0.75 x 0.22	Rt0.50	52648	75274	31.20	2	0.70
								yield strength:				
								GR B/BN /X42N: 42100-71800 PSI				
								Gr C: min. 40000 PSI				
								tensile strength:				
								GR B/BN /X 42N: 60200-95000 PSI				
								Gr C: min. 70000 PSI				

Kindberg, 21.07.2017

Page 4 of 9

No. 134199

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig/
Inspection certificate has been signed digitally and is
valid without an original signature

voestalpine Tubulars GmbH & Co KG
Qualitätsstelle / Quality Department

WEITZER

Abnahmbeauftragter
authorized inspection representative
représentant autorisé du contrôle

voestalpine

ONE STEP AHEAD.

voestalpine Tubulars GmbH & Co KG

Hardness testing

Lot No	Test Type	Heat treatment	Specimen Test			Hardness Number from	Hardness Number to	Mean Hardness Number from	Mean Hardness Number to	Variation
			Loc.	No.	Location					
Requ.:										
216620	AD01	Standard	normalized rolled	Rear	1	Body	HRB	81.30	82.50	81.47
Quadrant 1	1_Outer 2_Outer 3_Outer	AVG_Outer		1_Mid	2_Mid	3_Mid	AVG_Mid	1_Inner	2_Inner 3_Inner	AVG_Inner
	82.10	81.50	81.30	81.63	82.50	82.00	82.00	82.17	81.30	81.70
216621	AD01	Standard	normalized rolled	Rear	1	Body	HRB	81.20	82.30	81.37
Quadrant 1	1_Outer 2_Outer 3_Outer	AVG_Outer		1_Mid	2_Mid	3_Mid	AVG_Mid	1_Inner	2_Inner 3_Inner	AVG_Inner
	81.20	81.50	81.40	81.37	81.70	82.20	82.30	82.07	82.10	81.70
216622	AD01	Standard	normalized rolled	Rear	1	Body	HRB	81.80	83.20	82.10
Quadrant 1	1_Outer 2_Outer 3_Outer	AVG_Outer		1_Mid	2_Mid	3_Mid	AVG_Mid	1_Inner	2_Inner 3_Inner	AVG_Inner
	82.50	81.80	82.00	82.10	83.20	82.70	82.40	82.77	83.00	82.60
216623	AD01	Standard	normalized rolled	Rear	1	Body	HRB	80.00	81.70	80.73
Quadrant 1	1_Outer 2_Outer 3_Outer	AVG_Outer		1_Mid	2_Mid	3_Mid	AVG_Mid	1_Inner	2_Inner 3_Inner	AVG_Inner
	80.00	81.20	81.00	80.73	81.50	81.70	80.70	81.30	81.00	80.30
216624	AD01	Standard	normalized rolled	Rear	1	Body	HRB	81.40	82.50	81.53
Quadrant 1	1_Outer 2_Outer 3_Outer	AVG_Outer		1_Mid	2_Mid	3_Mid	AVG_Mid	1_Inner	2_Inner 3_Inner	AVG_Inner
	81.70	81.50	81.40	81.53	82.10	82.00	82.50	82.20	82.30	82.20

Kindberg, 21.07.2017

Page 5 of 9

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig/
Inspection certificate has been signed digitally and is
valid without an original signature

No. 134199

voestalpine Tubulars GmbH & Co KG
Qualitätsstelle / Quality Department

WEITZER

Abnahmbeauftragter
authorized Inspection representative
représentant autorisé du contrôle

voestalpine

ONE STEP AHEAD.

voestalpine Tubulars GmbH & Co KG

Impact testing

Requirement:			Length [Inch]	Wide [Inch]	Height [Inch]	Specimen Orientation	Temp. [°F]	Single ft-lbs	Average ft-lbs	Factor
2.165	.384	.13	long.	CH-V	-20					

Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe	Imp. Values:	Single1	Single2	Single3	Average	Unit
216620	AD01	Standard	normalized rolled	Rear	1	long.	36	40	40	39	ft-lbs
for information!											
Including Factor: Shear-Area [%]: Lateral Expansion (un-/broken): Lateral Expansion: [inch]											

Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe	Imp. Values:	Single1	Single2	Single3	Average	Unit
216620	AD01	Standard	normalized rolled	Rear	2	long.	39	40	39	39	ft-lbs
for information!											
Including Factor: Shear-Area [%]: Lateral Expansion (un-/broken): Lateral Expansion: [inch]											

Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe	Imp. Values:	Single1	Single2	Single3	Average	Unit
216621	AD01	Standard	normalized rolled	Rear	1	long.	36	37	33	36	ft-lbs
for information!											
Including Factor: Shear-Area [%]: Lateral Expansion (un-/broken): Lateral Expansion: [inch]											

Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe	Imp. Values:	Single1	Single2	Single3	Average	Unit
216621	AD01	Standard	normalized rolled	Rear	2	long.	36	39	35	36	ft-lbs
for information!											
Including Factor: Shear-Area [%]: Lateral Expansion (un-/broken): Lateral Expansion: [inch]											

Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe	Imp. Values:	Single1	Single2	Single3	Average	Unit
216622	AD01	Standard	normalized rolled	Rear	1	long.	37	32	33	34	ft-lbs
for information!											
Including Factor: Shear-Area [%]: Lateral Expansion (un-/broken): Lateral Expansion: [inch]											

Kindberg, 21.07.2017

Page 6 of 9

No. 134199

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig!
Inspection certificate has been signed digitally and is
valid without an original signature

voestalpine Tubulars GmbH & Co KG
Qualitätsstelle / Quality Department

WEITZER

Abnahmeverantwortlicher
authorized inspection representative
représentant autorisé du contrôle

voestalpine

ONE STEP AHEAD.

voestalpine Tubulars GmbH & Co KG

Impact testing

Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe long.	Imp. Values:	Single1	Single2	Single3	Average	Unit
216622	AD01	Standard			normalized rolled	Rear 2	34	36	36	35	ft-lbs

49 for information!

Including Factor:

Shear-Area [%]:

Lateral Expansion (un-/broken):

Lateral Expansion: [inch]

H: 0.130 [inch]

Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe long.	Imp. Values:	Single1	Single2	Single3	Average	Unit
216623	AD01	Standard			normalized rolled	Rear 1	30	30	30	30	ft-lbs

for information!

Including Factor:

Shear-Area [%]:

Lateral Expansion (un-/broken):

Lateral Expansion: [inch]

H: 0.130 [inch]

Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe long.	Imp. Values:	Single1	Single2	Single3	Average	Unit
216623	AD01	Standard			normalized rolled	Rear 2	31	29	30	30	ft-lbs

for information!

Including Factor:

Shear-Area [%]:

Lateral Expansion (un-/broken):

Lateral Expansion: [inch]

H: 0.130 [inch]

Requirement:	Length [Inch]	Wide [Inch]	Height [Inch]	Specimen Orientation	Temp. [°F]	Single ft-lbs	Average ft-lbs	Factor			
	2.165	.394	.13	long.	CH-V	-20				0.33	
Lot No	Test Type	Heat Treatment	Loc.	No.	Pipe	Imp. Values:	Single1	Single2	Single3	Average	Unit
216624	AD01	Standard			normalized rolled	Rear 1	32	30	31	31	ft-lbs

Mechanische Werte Informativ!

Including Factor:

Shear-Area [%]:

Lateral Expansion (un-/broken):

Lateral Expansion: [inch]

H: 0.130 [inch]

Kindberg, 21.07.2017

Page 7 of 9

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig!Inspection certificate has been signed digitally and is
valid without an original signature

No. 134199

voestalpine Tubulars GmbH & Co KG

Qualitätsstelle / Quality Department

WEITZER

Abnahmbeauftragter
authorized inspection representative
représentant autorisé du contrôle

voestalpine

ONE STEP AHEAD.

voestalpine Tubulars GmbH & Co KG

Chemical testing

Heat analysis

C	Si	Mn	P	S	Cr	Ni	Cu	Al	Ti	Mo	V	Sn	B	N2	Nb	Ca	CEQ
min. Requ.																	
0.0000	0.1000	0.2900															
0.2300	0.4000	1.0600	0.0250	0.0150	0.3000	0.3000	0.4000		0.0400	0.1500	0.0600		0.0010		0.0500		0.4000
1017395101																	
0.1799	0.2472	0.8627	0.0096	0.0044	0.0305	0.0155	0.0182	0.0176	0.0015	0.0022	0.0010	0.0004	0.0001	0.0043	0.0341	0.0019	0.3477
1017395445																	
0.1872	0.2461	0.9561	0.0146	0.0065	0.0165	0.0148	0.0193	0.0247	0.0018	0.0018	0.0005	0.0002	0.0003	0.0044	0.0382	0.0013	0.3526
1017395446																	
0.1804	0.2461	0.9501	0.0148	0.0040	0.0206	0.0185	0.0194	0.0263	0.0017	0.0028	0.0006	0.0004	0.0002	0.0046	0.0417	0.0012	0.3460
1017395447																	
0.1883	0.2626	0.8621	0.0171	0.0081	0.0274	0.0157	0.0301	0.0292	0.0016	0.0019	0.0007	0.0003	0.0003	0.0040	0.0440	0.0015	0.3587
1017395448																	
0.1812	0.2466	0.9714	0.0133	0.0053	0.0306	0.0162	0.0206	0.0263	0.0017	0.0035	0.0006	0.0001	0.0002	0.0074	0.0395	0.0016	0.3524

Kindberg, 21.07.2017

Page 8 of 9

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig!Inspection certificate has been signed digitally and is
valid without an original signature

No. 134199

voestalpine Tubulars GmbH & Co KG
Qualitätsstelle / Quality Department

WEITZER

Abnahmbeauftragter
authorized inspection representative
représentant autorisé du contrôle

voestalpine

ONE STEP AHEAD.

voestalpine Tubulars GmbH & Co KG

Chemical testing

Product analysis

C	Si	Mn	P	S	Cr	Ni	Cu	Al	Ti	Mo	V	Sn	B	N2	Nb	CEQ
Lot No.	216620	AD 01	1	Standard	Heat No.	1017395448										
0.1783	0.2353	0.9710	0.0124	0.0061	0.0291	0.0147	0.0193	0.0265	0.0024	0.0029	0.0037	0.0011	0.0003	0.0061	0.0385	0.3495
Lot No.	216620	AD 01	2	Standard	Heat No.	1017395448										
0.1784	0.2377	0.9651	0.0127	0.0065	0.0289	0.0158	0.0216	0.0251	0.0020	0.0027	0.0032	0.0008	0.0003	0.0059	0.0394	0.3487
Lot No.	216620	AD 01	3	Standard	Heat No.	1017395448										
0.1736	0.2380	0.9657	0.0128	0.0061	0.0293	0.0155	0.0206	0.0254	0.0021	0.0024	0.0031	0.0010	0.0003	0.0061	0.0390	0.3439
Lot No.	216620	AD 01	4	Standard	Heat No.	1017395448										
0.1787	0.2357	0.9656	0.0131	0.0058	0.0300	0.0163	0.0198	0.0252	0.0021	0.0033	0.0029	0.0005	0.0002	0.0063	0.0383	0.3493
Lot No.	216621	AD 01	1	Standard	Heat No.	1017395447										
0.1840	0.2506	0.9552	0.0161	0.0075	0.0283	0.0153	0.0292	0.0280	0.0019	0.0017	0.0032	0.0005	0.0003	0.0036	0.0434	0.3528
Lot No.	216621	AD 01	2	Standard	Heat No.	1017395447										
0.1857	0.2578	0.9593	0.0167	0.0092	0.0273	0.0157	0.0312	0.0281	0.0019	0.0011	0.0031	0.0006	0.0003	0.0036	0.0431	0.3550
Lot No.	216621	AD 01	3	Standard	Heat No.	1017395447										
0.1841	0.2562	0.9594	0.0166	0.0101	0.0273	0.0156	0.0316	0.0280	0.0018	0.0011	0.0032	0.0007	0.0003	0.0039	0.0439	0.3535
Lot No.	216621	AD 01	4	Standard	Heat No.	1017395447										
0.1828	0.2579	0.9571	0.0165	0.0097	0.0282	0.0150	0.0294	0.0283	0.0018	0.0012	0.0029	0.0009	0.0003	0.0033	0.0425	0.3517
Lot No.	216622	AD 01	1	Standard	Heat No.	1017395101										
0.1765	0.2346	0.9419	0.0089	0.0041	0.0306	0.0176	0.0186	0.0170	0.0018	0.0018	0.0033	0.0007	0.0001	0.0038	0.0339	0.3430
Lot No.	216622	AD 01	2	Standard	Heat No.	1017395101										
0.1751	0.2326	0.9427	0.0081	0.0037	0.0299	0.0169	0.0179	0.0177	0.0017	0.0016	0.0032	0.0008	0.0001	0.0033	0.0339	0.3415
Lot No.	216622	AD 01	3	Standard	Heat No.	1017395101										
0.1753	0.2316	0.9439	0.0085	0.0049	0.0307	0.0177	0.0184	0.0172	0.0018	0.0021	0.0030	0.0006	0.0001	0.0037	0.0340	0.3422
Lot No.	216622	AD 01	4	Standard	Heat No.	1017395101										
0.1738	0.2387	0.9420	0.0085	0.0044	0.0304	0.0180	0.0177	0.0171	0.0017	0.0018	0.0030	0.0006	0.0001	0.0032	0.0343	0.3402
Lot No.	216623	AD 01	1	Standard	Heat No.	1017395445										
0.1774	0.2202	0.9344	0.0123	0.0043	0.0148	0.0151	0.0171	0.0220	0.0022	0.0013	0.0032	0.0008	0.0003	0.0042	0.0365	0.3391
Lot No.	216623	AD 01	2	Standard	Heat No.	1017395445										
0.1775	0.2138	0.9257	0.0126	0.0045	0.0146	0.0153	0.0171	0.0219	0.0021	0.0012	0.0029	0.0008	0.0003	0.0041	0.0364	0.3377
Lot No.	216623	AD 01	3	Standard	Heat No.	1017395445										
0.1757	0.2131	0.9207	0.0125	0.0039	0.0146	0.0155	0.0173	0.0218	0.0020	0.0014	0.0027	0.0007	0.0003	0.0040	0.0364	0.3351
Lot No.	216623	AD 01	4	Standard	Heat No.	1017395445										
0.1747	0.2077	0.9207	0.0123	0.0041	0.0143	0.0157	0.0188	0.0218	0.0018	0.0013	0.0025	0.0008	0.0003	0.0040	0.0360	0.3339
Lot No.	216624	AD 01	1	Standard	Heat No.	1017395446										
0.1771	0.2251	0.9459	0.0138	0.0036	0.0201	0.0188	0.0187	0.0251	0.0023	0.0020	0.0033	0.0008	0.0003	0.0042	0.0401	0.3423
Lot No.	216624	AD 01	2	Standard	Heat No.	1017395446										
0.1768	0.2203	0.9339	0.0135	0.0041	0.0199	0.0191	0.0184	0.0241	0.0022	0.0020	0.0031	0.0007	0.0003	0.0041	0.0398	0.3401

Kindberg, 21.07.2017

Page 9 of 9

Abnahmeprüfzeugnis wurde digital signiert und ist ohne
Originalunterschrift gültig!
Inspection certificate has been signed digitally and is
valid without an original signature

No. 134199

voestalpine Tubulars GmbH & Co KG

Qualitätsstelle / Quality Department

WEITZER

Abnahmbeauftragter
authorized inspection representative
représentant autorisé du contrôle

voestalpine

ONE STEP AHEAD.

CERTIFICATE OF INSPECTION & TEST (EN 10204 3.1)

ST&H CORPORATION

74, Jwadongsunhwan-ro, Haeundae-gu, Busan, Korea
Tel : +82.51.744-4680(5 line) Fax : +82.51.744-4670
E-mail :qm@stnhcorp.com

155 050200/01

Certificate No. MJM9728-16/17
Customer INDUSTRIAL PIPING SPECIALISTS,
Contract No. TP548969
Spec. For Material ASTM A105N-14, ASME SA105N-15, NACE MR0175/ISO15156-1-2015, NACE MR0103/ISO17495-1-2016
Heat Treatment 930°C NORMALIZED & A.C.

Date : OCT. 17. 2017

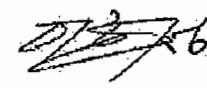
Certified to ISO9001:2008, ISO14001:2004, PED2014/68/EC by LRQA

Dimensional inspection ASME B16.5 - 2013

ITEM / SIZE	Q'ty	Heat No./ Batch No.	Size of Test Specimen		Tension Test				Hardness Test (HB)	Charpy Impact Test (10X10mm Specimen Size)				
			D mm	GL mm	Y.S MPa	T.S MPa	E.L %	R.A %		Indiv. 21J	Ave. 27J	Notch V	Temp. -29°C	
FK130RFWNXH	300LBS WN RF XH 1"	30	605086H	12.5 50.0	349	521	33	76	160	164	77	93	114	95
FK260RFTHRD	600LBS TH RF 2"	40	605086H	12.5 50.0	349	521	33	76	160	164	77	93	114	95
FK260RFWNXH	600LBS WN RF XH 2"	500	605086H	12.5 50.0	349	521	33	76	160	164	77	93	114	95
FK315RFWNSTD	150LBS WN RF STD 3"	300	605086I	12.5 50.0	349	521	33	76	160	164	77	93	114	95
	BLANK		BLANK						BLANK					

Heat No./ Batch No.	Max Min	Chemical Composition (%)											NDE					
		C	Si	Mn	P	S	Ni	Cr	Mo	Cu	V				CE	UT	MT	PT
		0.350	0.350	1.050	0.035	0.040	0.400	0.300	0.120	0.400	0.080							
605086H	H	0.172	0.217	1.100	0.013	0.007	0.007	0.016	0.002	0.017	0.001				0.360			
	P	0.180	0.216	1.080	0.014	0.002	0.009	0.024	0.002	0.025	0.001				0.367			
605086I	H	0.172	0.217	1.100	0.013	0.007	0.007	0.016	0.002	0.017	0.001				0.360			
	P	0.180	0.216	1.080	0.014	0.002	0.009	0.024	0.002	0.025	0.001				0.367			
												BLANK						

REMARK * H : Heat Analysis P : Product Analysis


* Impact Test performed according to ASTM A370 & MESC 76/210/2017 Paragraph 8.5 / Table 4 & 5.

* C:Mn = 1≤5

* Mn is Permitted up to Max 1.65% (ASTM A105-14 TABLE 1, NOTE 1.)

* PRODUCT OF KOREA

We hereby certify that the material herein has been made and tested in accordance with the above specification and also with the requirements called for by the above order.

H. J. LEE

Witnessed by / H. J. LEE

Manager of Q.A Dept. / J. M. KIM

ST-801-14-02

Carbon flange
2" 600 XHA105
HT#605086H

RECEIVED

JAN 24 2018

1721009-10-11
C100022 JOB # 1721901-02-03-04-05-06-07-08-09
PO # 1724102-03-04-05-18-19
1721910-11
1721911-12

[C180022] [605086H] [IN: 11] [T0405193-1] [FK260RFWNXH]

CERTIFICATE OF INSPECTION & TEST (EN 10204 3.1)

STH CORPORATION

74, Jwadongsunhwan-ro, Haeundae-gu, Busan, Korea
Tel : +82.51.744-4680(5 line) Fax : +82.51.744-4670
E-mail : qm@stnhcorp.com

PS/0203010

1 | C180022 | - | B8990 | - | IN: 10 | - | T0405193-5 | - | FX230RFWNXH | -

Certificate No. MJH9820-04/13 Date : NOV. 28, 2017
Customer INDUSTRIAL PIPING SPECIALISTS,
Contract No. TP557977
Spec. For Material ASTM A105N-14, ASME SA105N-15, NACE MR0175/ISO15156-1-2015, NACE MR0103/ISO17495-1-2016
Heat Treatment 930°C NORMALIZED & A.C

Certified to ISO9001:2008, ISO14001:2004, PED2014/68/EC by LRQA

Dimensional inspection ASME B16.5 - 2017

ITEM / SIZE	Q'ty	Heat No./ Batch No.	Size of Test Specimen		Tension Test				Hardness Test (HB)	Charpy Impact Test (10X10mm Specimen Size)					
			D mm	GL mm	Y.S MPa	T.S MPa	E.L %	R.A %		Indiv. 21J	Ave. 27J	Notch V	Temp. -29°C		
			Max 12.5	Min 5.0	250	485	22.0	30.0		187					
FK230RFWNXH	300LBS WN RF XH 2"	1500	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK160RFBL	600LBS BL RF 1"	35	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK260RFBL	600LBS BL RF 2"	200	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK160RFSW160	600LBS SW RF S160 1"	50	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK160RFSWXH	600LBS SW RF XH 1"	50	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK160RFTHRD	600LBS TH RF 1"	50	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK260RFTHRD	600LBS TH RF 2"	100	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK1.560RFWN160	600LBS WN RF S160 1 1/2"	10	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK260RFWNXH	600LBS WN RF XH 2"	300	B8990	12.5	50.0	370	545	31.5	70.5	143	144	149	188	180	172
FK2415RFBL	150LBS BL RF 24"	15	B9437	12.5	50.0	360	570	37.5	75.5	140	144	170	150	184	168

Heat No./ Batch No.	Chemical Composition (%)												NDE			
	C	Si	Mn	P	S	Ni	Cr	Mo	Cu	V			CE	UT	MT	PT
	Max	0.350	0.350	1.050	0.035	0.400	0.300	0.120	0.400	0.080						
B8990	H	0.190	0.246	1.010	0.017	0.010	0.039	0.051	0.002	0.013	0.002		0.372			
	P	0.181	0.246	1.020	0.015	0.009	0.036	0.054	0.004	0.013	0.002		0.366			
B9437	H	0.174	0.220	0.991	0.016	0.010	0.009	0.027	0.002	0.015	0.001		0.346			
	P	0.176	0.209	0.997	0.014	0.009	0.012	0.041	0.003	0.017	0.001		0.353			
	BLANK															

REMARK * H : Heat Analysis P : Product Analysis

* Impact Test performed according to ASTM A370 & MESC 76/210/2017 Paragraph 8.5 / Table 4 & 5.

* C:Mn = 1≤5

We hereby certify that the material herein has been made and tested in accordance with the above specification and also with the requirements called for by the above order.

Witnessed by / H. J. LEE

Manager of Q.A Dept. / JAY KIM

ST-801-14-02

Carbon flange

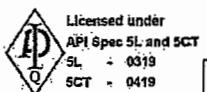
RECEIVED

JAN 29 2018

2" 300 XH A105

HT# B8990

C180022
PO # 1721901-02-03-04-05-06-07-09-10-11
PG


STH CORPORATION

ArcelorMittal South Africa Limited
Tubular Products
273 Genl. Hertzog Rd,
Peacehaven Vereeniging 1939
P O Box 48 Vereeniging 1930
South Africa

**MATERIAL TEST CERTIFICATE
SEAMLESS TUBE**

Telephone +27 (0)16 450 4220
Fax. +27 (0)16 423 4906

ISO 9001: 2008
DE-385997 QM
Test Certificate
EN 10204:2004 TYPE 31

R
ArcelorMittal

Customer:	Mattsco Supply Company	Customer Order/Contract No:	SUS1 154992
Order No:	4000022888	Material No:	1000042004
Certificate Reference No:	040062066546	Cast/Heat No:	1607852
Product: FULLY KILLED HOT FINISHED CARBON STEEL SEAMLESS TUBES			
Specification: ASTM A333.15/A106B:15/AS38:12 A999.15 ASME SA333.15/SA106B:15/SA53B:15 A999.15			
Product Marking: ARCELORMITTAL SA ASTM A106 GR B/ASME SA106 GR B ASTM A333 GR 6/ASME SA333 GR 6 HFS LT M50F 1.900 0.200 21.000 TESTED 3000 psi CAST NO: 1607852 PROD/O NO: TI242288816 NDE MADE IN SOUTH AFRICA			

General Information

Quantity	Mass	Dimensions			Total Length	Steel making process	Final Rolling Operation
		Tube OD	Thickness	Length			
283	21,618.197(lb)	1.900(“)	0.200(“)	21.000 (ft)	5,943.000(ft)	Electric Arc	Normalised rolled with finishing in the range of 1,553-1,733°F and cooled in still air

Chemical Composition

Element(%)	C	Si	Mn	S	P	Cr	Ni	Mo	Cu	V	Al	Ti	Sn	Ca	N	B	Nb	CE
Minimum	-	0.10	0.29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Maximum	0.230	-	1.35	0.025	0.025	0.30	0.40	0.120	-	0.080	-	-	-	-	-	0.43	<i>16</i>	
Heat	0.130	0.20	1.21	0.004	0.013	0.04	0.01	0.001	0.005	0.057	0.023	0.013	0.001	0.0006	0.0081	0.0003	0.0005	0.35
Product	0.1300	0.2000	1.2100	0.0036	0.0130	0.0400	0.0100	0.0010	0.0050	0.0570	0.0230	-	-	-	-	-	0.3523	<i>16</i>
Product (ADD)	0.1300	0.2000	1.2100	0.0036	0.0130	0.0400	0.0100	0.0010	0.0050	0.0570	0.0230	-	-	-	-	-	0.3523	

Mechanical Properties

Specification Limits	UTS (Rm)		Yield (0.5%)		% EL 2 inch		UTS (Rm)	Yield (0.5%)		% EL 2 inch		OTHER TESTS			
	MPa	psi	MPa	psi	MPa	psi		MPa	psi	MPa	psi	Category	Result		
Minimum	-	60000	-	35000	-	30.0	(5) Actual	-	-	-	-	Flattening	Passed		
Maximum	-	-	-	-	-	-	(6) Actual	-	-	-	-	Hydrostatic	3000 psi. for 5 Sec		
(1) Actual	70633	-	52648	-	35.0	-	(7) Actual	-	-	-	-	NDI: EMI	PASS - ASTM E570 - 12.5% NOTCH		
(2) Actual	71793	-	54824	-	37.0	-	Orientation & type of tensile test	Longitudinal, Strip				NDI: UT	UT not required		
(3) Actual	-	-	-	-	-	-	Width of tensile piece: (inch)	0.75 inch				HV 22 lbs	147 155 157		
(4) Actual	-	-	-	-	-	-	Orientation of impact test piece	0.394" X 0.130" - long							

Remarks:

Material in accordance with NACE MR0175:2015/ISO15156-2:2015, MR0103:2015. Dimensions to ASME B36.10M-2015.
The material conform to the hot yield strength requirements as per ASME, Sect II, Pt D, Table Y-1, 2015. All the material conform to the visual and dimensional requirements and is made to a suitable fine grain practice.

Quality Assurance Manager: PJ Venter

Date of Release: 2016.12.20

Certified by: *PJ Venter*

We hereby certify that the material was manufactured, tested and inspected to and fully comply with the requirements of referenced specifications. No changes, amendments or additions may be made to this document. Any changes, which are effected, shall invalidate this certificate.

RECEIVED

JAN 11 2018

C180023
PO # *16* JOB # *Stock*

Carbon Pipe
1-1/2" XH
ID/TFA
HT# 1607852

ArcelorMittal South Africa Limited
Tubular Products
273 Genl. Hertzog Rd,
Peacehaven Vereeniging 1939
P O Box 48 Vereeniging 1930
South Africa

**MATERIAL TEST CERTIFICATE
SEAMLESS TUBE**

Telephone +27 (0)16 450 4220
Fax +27 (0)16 423 4906

Licensed under
API Spec 5L and 5CT
5L - 0319
5CT - 0419

ISO 9001:2008
DE-395997 QM
Cert Certificate
2014-2015

ArcelorMittal

Customer:	Mattco Supply Company	Customer Order/Contract No:	SUS1 154992
Order No:	4000022888	Material No:	1000042004
Certificate Reference No:	040062066546	Cast/Heat No:	1607852
Product:	FULLY KILLED HOT FINISHED CARBON STEEL SEAMLESS TUBES		
Specification:	ASTM A333.15/A106B.15/AS3B.12 A999.15 ASME SA333.15/SA106B.15/SA3B.15 A999.15		
Product Marking:	ARCELORMITTAL SA ASTM A106 GR B/ASME SA106 GR B ASTM A333 GR 6/ASME SA333 GR 6 HFS LT M50F 1.900 0.200 21.000 TESTED 3000 psi CAST NO: 1607852 PROD/O NO: T1242288810 NDE MADE IN SOUTH AFRICA		

Mechanical Properties

Specification Limits	UTS (Rm)		Yield (0.5%)		% EL 2 inch
	MPa	psi	MPa	psi	
Minimum	60000		35000		30.0
Maximum	-		-		-
(8) Actual					
(9) Actual					
(10) Actual					
(11) Actual					
(12) Actual					
(13) Actual					
(14) Actual					
(15) Actual					
(16) Actual					
(17) Actual					

Other Tests

Remarks:

Material in accordance with NACE MR0175:2015/ISO15156-2:2015, MR0103:2015. Dimensions to ASME B36.10M-2015.

The material conform to the hot yield strength requirements as per ASME, Sect. II, Pt D, Table Y-1, 2015. All the material conform to the visual and dimensional requirements and is made to a suitable fine grain practice.

Quality Assurance Manager: PJ Venter

Date of Release: 2016.12.20

Certified by:

We hereby certify that the material was manufactured, tested and inspected to and fully comply with the requirements of referenced specifications. No changes, amendments or additions may be made to this document. Any changes which are made shall invalidate this certificate.

CERTIFICATE OF INSPECTION & TEST (EN 10204 3.1)

STH CORPORATION
74, Jwadongsunhwan-ro, Haeundae-gu, Busan, Korea
Tel : +82.51.744-4680(5 line) Fax : +82.51.744-4670
E-mail : qm@stnhcorp.com

Certificate No. MJW8888 Date : APR. 10. 2015
Customer INDUSTRIAL PIPING SPECIALISTS,
Contract No. ELP14739
Spec. For Material ASTM A105N-14/ASME SA105N-13/NACE MR0175 & NACE MR0103/ISO 15156-1:2001
Heat Treatment 910°C NORMALIZED & A.C.

Certified to ISO9001:2008, ISO14001:2004, PED97/23/EC by LRQA

Dimensional inspection ASME B16.5 – 2013

ITEM / SIZE	Q'ty	Heat No./ Batch No.	Size of Test Specimen		Tension Test				Hardness Test (HB)	Charpy Impact Test (10X10mm Specimen Size)			
			D mm	GL mm	Y.S MPa	T.S MPa	E.L %	R.A %		Indiv.	Ave.	Notch	Temp.
			Max 12.5	Min 50.0	250	485	22.0	30.0		Test Result (J)			
BA300WRXH6	300LBS WN RF XH 6"	65	B0355	12.5	50.0	335	510	34	71.5	143	145		
BA150BR8	150LBS BL RF 8"	25	B0355	12.5	50.0	335	510	34	71.5	143	145		
BA300WRSTD8	300LBS WN RF STD 8"	162	B0355	12.5	50.0	335	510	34	71.5	143	145		
BA300WRXH8	300LBS WN RF XH 8"	80	B0355	12.5	50.0	335	510	34	71.5	143	145		
BA300WRSTD2	300LBS WN RF STD 2"	18	B1572	12.5	50.0	355	525	32	68.5	138	140		
BA300WRXH2	300LBS WN RF XH 2"	37	B1572	12.5	50.0	355	525	32	68.5	138	140		
BA150SR3	150LBS SO RF 3"	250	B1572	12.5	50.0	355	525	32	68.5	138	140		
BA300BR3	300LBS BL RF 3"	5	B1572	12.5	50.0	355	525	32	68.5	138	140		
BA1500WRXH1.5	1500LBS WN RF XH 1 1/2"	70	B0597	12.5	50.0	355	530	35.5	69.5	145	149		
BA1500TR1.5	1500LBS TH RF 1 1/2"	112	B0597	12.5	50.0	355	530	35.5	69.5	145	149		

Heat No./ Batch No.	Max Min	Chemical Composition (%)											NDE		
		C	Si	Mn	P	S	Ni	Cr	Mo	Cu	V	CE	UT	MT	PT
B0355	0.350 0.100	0.211 0.185	0.246 0.243	0.955 0.941	0.011 0.014	0.009 0.003	0.027 0.026	0.079 0.001	0.044 0.018	0.019 0.001	0.001	0.398	<i>AB</i>		
B1572	0.350 0.100	0.185 0.195	0.243 0.237	0.941 0.938	0.014 0.014	0.009 0.006	0.012 0.012	0.009 0.026	0.026 0.007	0.001 0.001	0.001	0.349	<i>AB</i>		
B0597	0.350 0.100	0.195 0.195	0.243 0.237	0.941 0.938	0.014 0.014	0.009 0.006	0.012 0.012	0.009 0.026	0.026 0.007	0.001 0.001	0.001	0.359	<i>AB</i>		
		BLANK													

REMARK * PRODUCT OF KOREA

RECEIVED

JAN 24 2018

Witnessed by / H. J. LEE

Manager of Q.A Dept. / J. W. PARK

100022 PO# JOB # 1721901-02-03-04-05-06 STH CORPORATION
1724101-02-03-04-05-06-19
1721907-08-09-10
1721010-11

ST-801-14-01

Carbon flange

1 1/2" XHA105
HT# B0597

09/29/2017 From: AMERICAN ALLOY STEEL, INC.
 P.O. #: C170958
 Item: 3 (1 PC) 7/8" X 96" X 240" EXISTING
 TAG: STOCK

To: ALFA LAVAL
 AA PL#:

5190963

SSAB

12400 Highway 43 North, Axis, Alabama 36505, US

Test Certificate

AMERICAN ALLOY
 PLATE #5190963

Form TC1: Revision 2: Date 23 Apr 2014

Customer: AMERICAN ALLOY STEEL, INC. P.O. BOX 40469 HOUSTON TX 77240 0469			Customer P.O.No.:112258-OK			Mill Order No. 41-507647-04			Shipping Manifest: AR246886									
			Product Description: ASME SA516-70/SA516-65/SA516-60(15) ASTM A516-70/A516-65/A516-60(10/15) LCVN 15 FT.LBS@-50F/A673-P;VACUUM DEGAS NORMALIZED			Ship Date: 15 Jul 17 Cert Date: 15 Jul 17 (Page 1 of 1)												
			Size: 0.875 X 96.00 X 480.0 (IN)															
Tested Pieces:			Tensiles:			Charpy Impact Tests												
Heat Id	Piece Id	Tested Thickness	Tst Loc	YS (KSI)	UTS (KSI)	%RA	Elong % 2in 8in	Tst Dir	Hardness	Abs. Energy(FTLB)	1 2 3 Avg	% Shear 1 2 3 Avg	Tst Tmp	Tst Dir	Tst Siz (mm)	BDWTT Tmp %Shr		
W7F836	A17	0.883 (DISCRT)	C	50	74		29	T		86 102 71 86			-60F	L	10.			
Heat			Chemical Analysis												CEQ = .4290 J/S		ORGN	
W7F836	C	Mn	P	S	Si	Tot Al	Sol Al	Cu	Ni	Cr	Mo	Cb	V	Ti	B	IIW	USA	
	.19	1.00	.011	.002	.24	.025	.024	.26	.14	.13	.04	.002	.005	.008	.0001	.42		
KILLED STEEL MERCURY IS NOT A METALLURGICAL COMPONENT OF THE STEEL AND NO MERCURY WAS INTENTIONALLY ADDED DURING THE MANUFACTURE OF THIS PRODUCT. $CEV (IIW) = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15$ EAF STEEL, CONTINUOUS CAST KILLED STEEL, PRODUCED TO A FINE GRAIN PRACTICE MTR EN 10204:2004 INSPECTION CERTIFICATE 3.1 COMPLIANT 100% MELTED AND MANUFACTURED IN THE USA. WELD REPAIRING HAS NOT BEEN PERFORMED NORMALIZED PLATES. HEATED AT 1665F FOR 39 MINUTES. TEST COUPONS TAKEN FROM HEAT TREATED PLATE. PRODUCTS SHIPPED: → W7F836 A17 6726074 PCES: 1, LBS: 11435																		
RECEIVED SEP 29 2017 PO#C170958 JOB# Stock 28																		
<input checked="" type="checkbox"/> Cust Part #:						WE HEREBY CERTIFY THAT THIS MATERIAL WAS TESTED IN ACCORDANCE WITH, AND MEETS THE REQUIREMENTS OF, THE APPROPRIATE SPECIFICATION											Justin Ward SENIOR METALLURGIST - PRODUCT	

MATERIAL TEST REPORT

Sold To: 4390000
ALFA LAVAL INC.
ONE ACE AVENUE
85TH AVE. & LYNN LANE ROAD
BROKEN ARROW OK 74012

Ship To: 4390000
ALFA LAVAL INC.
ONE ACE AVENUE
85TH AVE. & LYNN LANE ROAD
BROKEN ARROW OK 74012

Purchase Order: C 120017
Part Number: A13006250600269002
Sales Order: 2500909
Material: A13006250600269002 A/SA 214 ERW 06250D 060M ACE 52'-1" (P)
Delivery / File Nbr: 80389779

S/8" Carbon Tubes

Description: ASTM A214-96(12) ASME SA214 2017 ERW
CARBON STEEL TUBING.

Test: FLATTENING TEST PASSED. REVERSE FLATTENING TEST PASSED. FLANGE TEST PASSED. NDT
ELECTRIC TESTED TO ASTM A450 OR A1016 & APPLICABLE TEST METHOD E309 OR E426.

Heat Number:	WA709650	WA710152	WA711201	WB711093
CARBON	LDL	0.070	0.060	0.060
MANGANESE	LDL	0.380	0.350	0.350
PHOSPHORUS	LDL	0.014	0.012	0.013
SULFUR	LDL	0.004	0.001	0.001
Ultimate (PSI)				
Yield (PSI)				
Elongation (%)				
Hardness (RB)	49 / 54	51 / 54	54 / 54	52 / 55

Webco Industries, Inc. certifies that the material described was manufactured and tested and/or
inspected in accordance with the specification and fulfills requirements in such respect.

Date: 01/24/2018

This document conforms to the requirements of Specification EN 10204 Inspection Document Type 3.1.

Tony Stubblefield

This document was prepared by means of electronic processing and is valid without signature.

Quality Manager

TSTUBBLE@WEBCOTUBE.COM

Stock RG c20017
201 S. Woodland Dr.
Sand Springs OK 74063

Job # 0d

JAN 24 2018

RECEIVED

TO: ALFA LAVAL

AA PL# : 5187896

S.O. #: 582690

EXISTING

09/29/2017 From: AMERICAN ALLOY STEEL, INC.

P.O. #: C170958

Item: 1 (1 PC) 5/8" X 96" X 240" STOCK

P.O.Box 279
Winton, NC 27986
(252) 356-3700

Mill Test Report

Page 3

AMERICAN ALLOY
PLATE # 5187896

1505 River Rd
Cofield, NC 27922
(252) 356-3700

Issuing Date : 05/08/2017 B/L No. : 471328 Load No. : 480448 Our Order No. : 147218/5 Cust. Order No. : 111654-OK

Vehicle No: TTPX 804787 Sold To: AMERICAN ALLOY STEEL INC
Specification: 0.6250" x 96.000" x 240.000" 6230 N HOUSTON ROSSLYN RD
ASTM A518 70/65/60-10(2015)/ASME SA516-70/65/60 PVQ 2013/2015 PO BOX 40469
Normalized Plate NACE MR0175 Annex 2.1.2, MR0103 (2010) Section
2.1.2 Compliant (2015) 13.1.1, 13.1.2) Vacuum Degassed NORTH HOUSTON, TX 77091

Marking : 111654-OK

Ship To: AMERICAN ALLOY STEEL
6350 N ERIE AVE
C/O SKOL TRACK #21
OWASSO, OK 74055

Heat No	C	Mn	P	S	Si	Cu	Ni	Cr	Mo	Al(tot)	V	Nb	Ti	N	Ca	B	Sn	Ceq	Pcm
7502814	0.20	1.15	0.008	0.001	0.18	0.15	0.06	0.10	0.03	0.029	0.006	0.001	0.002	0.0064	0.0031	0.0003	0.006	0.43	0.28
Tensile Test																			
Plate Serial No	Pieces	Tons	Dir.	Yield (psi)	Tensile (psi)	Elong. % in 2"	Elong. % in 5"	Norm	Time "F	Temper (min)	Time "F	Time (min)	Dir.	1	2	3	Ave	Min	
7502814-03	7	14.29	T	60,900	77,100	43.3		1650	27				H-L	128.5	145.3	184.9	152.2	15	
Charpy Impacts																			

RECEIVED

SEP 29 2017

PO# C170958 JOB# Stock28

MATERIAL CONFORMS TO

NACE MR0175

BHN 153 TO 159

CERTIFIED BY

AMERICAN ALLOY STEEL

BY VB DATE 9/29/17

HOT ROLLED CARBON STEEL PLATE
Please frequency charpy:

Manufactured to fully killed fine grain practice by Electric Arc Furnace. Welding or weld repair was not performed on this material. Mercury has not been used in the direct manufacturing of this material. Produced as continuous cast discrete plate, unless otherwise noted in Specification. For Mexico shipments: nbo-SalesMX@Nucor.com

Yield by 0.5EUL method unless otherwise specified. Ceq = C+(Mn/8)+((Cr+Mo+V)/5)+((Cu+Ni)/15)

Pcm = C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+B

Melted and Manufactured in the USA. ISO 9001:2008 certified (#010940) by SRI Quality System Registrar (#0965-06). PED 97/23/EC 7/2 Annex 1, Para. 4.3 Compliant.

DIN 50049 3.1.8/EN 10204 3.1B(2004), DIN EN 10204 3.1(2008) compliant. For ABS grades only, Quality Assurance certificate 14-NMPQA-723

Certified a true copy of the
original, retained in our file.
AMERICAN ALLOY STEEL, INC.

Reviewed By:

Bob Depretis

We hereby certify that the contents of this report are accurate and correct. All test results and operations performed by the material manufacturer are in compliance with the applicable specifications, including customer specifications.

T. A. Depretis

T. A. Depretis, Metallurgist

6/8/2017 3:02:22 PM

*carbon steel plate
NU390N*

MATERIAL TEST REPORT

Sold To: 4390000
ALFA LAVAL INC.
ONE ACE AVENUE
85TH AVE. & LYNN LANE ROAD
BROKEN ARROW OK 74012

Ship To: 4390000
ALFA LAVAL INC.
ONE ACE AVENUE
85TH AVE. & LYNN LANE ROAD
BROKEN ARROW OK 74012

Purchase Order: C 120017
Part Number: A13007500600269002
Sales Order: 2500909
Material: A13007500600269002 A/SA 214 ERW 07500D 060M ACE 52'-1" (P)
Delivery / File Nbr: 80383833

3/4" Carbon Tubes

Description: ASTM A214-96(12) ASME SA214 2015 ERW
CARBON STEEL TUBING.

Test: FLATTENING TEST PASSED. REVERSE FLATTENING TEST PASSED. FLANGE TEST PASSED. NDT
ELECTRIC TESTED TO ASTM A450 OR A1016 & APPLICABLE TEST METHOD E309 OR E426.

Heat Number:	WA709073	WA709419	WA709648	WA710149
	%	%	%	%
CARBON	LDL	0.060	0.060	0.060
MANGANESE	LDL	0.360	0.360	0.360
PHOSPHORUS	LDL	0.015	0.014	0.015
SULFUR	LDL	0.005	0.003	0.002
Ultimate (PSI)				
Yield (PSI)				
Elongation (%)				
Hardness (RB)	53 / 53	53 / 56	54 / 56	52 / 53

Webco Industries, Inc. certifies that the material described was manufactured and tested and/or
inspected in accordance with the specification and fulfills requirements in such respect.

This document conforms to the requirements of Specification EN 10204 Inspection Document Type 3.1.

This document was prepared by means of electronic processing and is valid without signature.

Date: 11/07/2017

Tony Stubblefield

Quality Manager

TSTUBBLE@WEBCOTUBE.COM

201 S. Woodland Dr.

Sand Springs OK 74063

RECEIVED

NOV 08 2017

S120017 S
PO # JOB #

PJS

P.O.Box 279
Winston, NC 27986
(252) 356-3700

Mill Test Report

Page 1

AMERICAN ALLOY
PLATE #5192305

1505 River Rd
Coffield, NC 27922
(252) 356-3700

Issuing Date : 08/06/2017 B/L No. : 479479 Load No. : 489106 Our Order No. : 149769/2 Cust. Order No. : 112684-OK
 Vehicle No: LW 62159 Sold To: AMERICAN ALLOY STEEL INC
 Specification: 0.5000" x 96.000" x 240.000"
 ASTM A516 70/65/60-10(2015)/ASME SA516-70/65/60 PVQ 2013/2015
 Normalized Plate NACE MR0175 Annex 2.1.2, MR0103 (2010) Section
 2.1.2 Compliant (2015) 13.1.1, 13.1.2) Vacuum Degassed
 Marking : 112684-OK

Heat No	C	Mn	P	S	Si	Cu	Ni	Cr	Mo	A(tot)	V	Nb	Ti	N	Ca	B	Sn	Seq	Pcm	
7505075	0.19	1.04	0.007	0.001	0.22	0.24	0.09	0.10	0.02	0.032	0.008	0.002	0.002	0.0071	0.0035	0.0002	0.008	0.41	0.27	
7505076	0.19	1.06	0.007	0.000	0.19	0.24	0.10	0.11	0.02	0.027	0.005	0.002	0.001	0.0078	0.0030	0.0001	0.009	0.41	0.27	
Tensile Test																				
Plate Serial No	Pieces	Tons	Dir.	Yield (psi)	Tensile (psi)	Elong. % in 2"	Elong. % in 8"			Norm (°F)	Time (min)	Temper (°F)	Time (min)							
7505075-07	4	6.53	T	51,900	77,300	39.0				1650	23									
7505076-01	12	19.60	T	52,900	78,000	40.5				1650	23									
7505075-07	4	6.53	T	51,900	77,300	39.0				1650	23									
7505076-01	12	19.60	T	52,900	78,000	40.5				1650	23									
Charpy Impacts																				
Plate Serial No	Pieces	Tons	Dir.	—Absorbed Energy (ft-lbs)—	—Lateral Expansion (in.)—	—Shear (%)—														
				(ft-lbs) 1	(ft-lbs) 2	(ft-lbs) 3	(ft-lbs) Ave	Min	(in.) 1	(in.) 2	(in.) 3	(in.) Ave	(in.) Min	(%) 1	(%) 2	(%) 3	(%) Ave	Min	Temp (°F)	Size
7505075-07	4	6.53	H-L	127.3	127.2	118.4	124.3	15											-50	10mm
7505076-01	12	19.60	H-L	95.4	72.5	81.8	83.2	15											-50	10mm

RECEIVED

Certified a true copy of the
original, retained in our file.
AMERICAN ALLOY STEEL, INC.

Revised By:
J.P 9/29/2017

HOT ROLLED CARBON STEEL PLATE
Piece frequency charpy;

Manufactured to fully killed fine grain practice by Electric Arc Furnaces. Welding or weld repair was not performed on this material.
 Mercury has not been used in the direct manufacturing of this material. Produced as continuous cast discrete plate, unless otherwise noted in Specification. For Mexico shipments: nuc-SalesMX@Nucor.com
 Yield by 0.5EUL method unless otherwise specified. Ceq = C+(Mn/6)+(Cr+Mo+V/5)+((Cu+Ni)/15)
 Pcm = C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+58
 Melted and Manufactured in the USA. ISO 9001:2008 certified (#010840) by SRI Quality System Registrar (#0985-09). PED 97/23/EC 7/2 Annex 1, Para. 4.3 Compliant.
 DIN 50049 3.1/B/EN 10204 3.1B(2004), DIN EN 10204 3.1(2005) compliant. For ABS grades only, Quality Assurance certificate 14-MMPQA-723

We hereby certify that the contents of this report are accurate and correct. All test results and operations performed by the material manufacturer are in compliance with the applicable specifications, including customer specifications.

T. A. Depretis
T. A. Depretis, Metallurgist

8/6/2017 11:08:17 AM

TO: ALFA LAVAL AA PL# : 5192308

S.O. #: 585503

11/02/2017 From: AMERICAN ALLOY STEEL, INC.

P.O. #: C171040

Item: 2 (1 PC) 1/2" X 96" X 240"

TAG: STOCK

NUCOR
PLATE MILLP.O.Box 279
Winton, NC 27986
(252) 356-3700

Mill Test Report

Page 1

AMERICAN ALLOY
PLATE #51923081505 River Rd
Cotfield, NC 27922
(252) 356-3700NUCOR
It's Our Nature

Issuing Date : 08/06/2017 B/L No. : 479479 Load No. : 489100 Our Order No. : 149768/2 Cust. Order No. : 112684-OK

Vehicle No: LW 62159 Sold To: AMERICAN ALLOY STEEL INC
Specification: 0.5000" x 96.000" x 240.000" 6230 N HOUSTON ROSSLYN RD
ASTM A516 70/65/60-10(2015)/ASME SA516-70/65/60 PVQ 2013/2015
Normalized Plate NACE MR0175 Annex 2.1.2, MR0103 (2010) Section
2.1.2 Compliant (2015) 13.1.1, 13.1.2) Vacuum Degassed
NORTH HOUSTON, TX 77091
Ship To: AMERICAN ALLOY STEEL
6350 N ERIE AVE
C/O SKOL TRACK #21
OWASSO, OK 74055

Marking : 112684-OK

Heat No	C	Mn	P	S	Si	Cu	Ni	Cr	Mo	Al(tot)	V	Nb	Ti	H	Ca	B	Sn	Ceq	Pcm
7505075	0.19	1.04	0.007	0.001	0.22	0.24	0.09	0.10	0.02	0.032	0.008	0.002	0.002	0.0071	0.0038	0.0002	0.009	0.41	0.27
7505076	0.19	1.06	0.007	0.000	0.19	0.24	0.10	0.11	0.02	0.027	0.005	0.002	0.001	0.0078	0.0030	0.0001	0.009	0.41	0.27

Plate Serial No	Pieces	Tons	Tensile Test					Heat Treat				
			Dir.	Yield (psi)	Tensile (psi)	Elong. % in 2"	Elong. % in 8"	Norm (°F)	Time (min)	Temper (°F)	Time (min)	
7505075-07	4	6.53	T	51,900	77,300	39.0		1650	23			
7505076-01	12	19.60	T	52,900	78,000	40.5		1650	23			
7505075-07	4	6.53	T	51,900	77,300	39.0		1650	23			
7505076-01	12	19.60	T	52,900	78,000	40.5		1650	23			

Plate Serial No	Pieces	Tons	Charpy Impacts															
			Absorbed Energy (ft-lbs)			Lateral Expansion (in.)				Shear (%)								
Dir.	(ft-lbs) 1	(ft-lbs) 2	(ft-lbs) 3	(ft-lbs) Avg	Min	(in.) 1	(in.) 2	(in.) 3	(in.) Ave	(in.) Min	(%) 1	(%) 2	(%) 3	(%) Ave	Min	Temp (°F)	Size	
H-L	127.3	127.2	118.4	124.3	15										-50	10mm		
H-L	95.4	72.5	81.8	83.2	15										-50	10mm		

NU343N 1/2" Carbon Plate

HOT ROLLED CARBON STEEL PLATE
Piece frequency charpy:

Manufactured to fully killed fine grain practice by Electric Arc Furnace. Welding or weld repair was not performed on this material. Mercury has not been used in the direct manufacturing of this material. Produced as continuous cast discrete plate, unless otherwise noted in Specification. For Mexico shipments: nuc-SalesMX@Nucor.com

Yield by 0.25UL method unless otherwise specified. Ceq = C+(Mn/6)+((Cr+Mo+V)/5)+((Cu+Ni)/15)

Pcm = C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B

Melted and Manufactured in the USA. ISO 9001:2008 certified (#019840) by SRI Quality System Registrar (#0985-09). PED 97/23/EC 7/2 Annex 1, Para. 4.3 Compliant. DIN 50049 3.1(BEN) 10204 3.1(B) (2004). DIN EN 10204 3.1(2005) compliant. For ABS grades only. Quality Assurance certificate 14-MMPQA-723

We hereby certify that the contents of this report are accurate and correct. All test results and operations performed by the material manufacturer are in compliance with the applicable specifications, including customer specifications.

T. A. Depretis

T. A. Depretis, Metallurgist

8/6/2017 11:06:17 AM

RECEIVED

NOV 03 2017

C171040 Stock

PO# _____ JOB# _____

ASME Code Calculations

Section VIII, Div. 1, Appendix 13, Fig 13-2(a), Sketch (1), 2013 Edition

Customer: McClung Energy

Purchase Order Number: 0014949-01

Date: 2/21/2018

ACE Job Number: 1721901-11

Section Name/Serial Number: IC1

Tag:

Header Material: SA-516-70

Code Allowable Stress, **S**: 20000 PSI (137.895 MPa)

Tube Diameter: 0.625 inch (15.88 mm)

Tube Pitch: 1.500 inch (38.100 mm)

C.A., Corrosion Allowance: 0.000 inch (0.0 mm)

P, Design Pressure: 645 PSI (4.4 MPa)

Maximum Design Temperature: 350 deg F (177 deg C)

Minimum Design Temperature: -20 deg F (-29 deg C)

Stress Relief: No

Plug Type: TAPER

Overall Header Width: 5.7500 Inch (146.05 mm)

Overall Header Height: 6.625 inch (168.28 mm)

t₁, Short Side Plate Thickness, Corroded: 0.500 inch (12.70 mm)

t₂, Long Side Plate Thickness, Corroded: 0.875 inch (22.23 mm)

D_p, Plug Thread Diameter: 0.768 inch (19.52 mm)

Hydrostatic Test Pressure: 839 PSI (5.8 MPa)

h, Long Inside Dimension, Corroded: 5.6250 inch (142.88 mm)

H, Short Inside Dimension, Corroded: 4.0000 inch (101.60 mm)

Calculated Variables

$$e_m = e_b = \frac{Tube\ Pitch - D_p}{Tube\ Pitch} = \frac{(1.500 - 0.7684)}{1.500} = 0.48773$$

$$\alpha = H/h = 4.0000/5.6250 = 0.71111$$

$$I_1 = \frac{(t_1)^3}{12} = \frac{(0.500)^3}{12} = 0.0104167 \quad I_2 = \frac{(t_2)^3}{12} = \frac{(0.875)^3}{12} = 0.0558268 \quad K = \alpha \frac{(I_2)}{(I_1)} = 0.71111 \frac{(0.0558268)}{(0.0104167)} = 3.81111$$

$$1 + \alpha^2 K = 1 + 0.71111^2 3.81111 = 2.92720$$

$$1 + K = 1 + 3.81111 = 4.81111$$

$$c_1 = 0.5 \times t_1 = 0.5 \times 0.500 = 0.25000 \quad c_2 = 0.5 \times t_2 = 0.5 \times 0.875 = 0.43750$$

Membrane Stress (Not to Exceed 20000 PSI)

Short Side Plates: $S_m = \frac{Ph}{2t_1*em} = \frac{645*5.6250}{2*0.500*1.00000} = 3628.1 \text{ PSI}, 25.015 \text{ MPa}$ ①

Long Side Plates: $S_m = \frac{PH}{2t_2*em} = \frac{645*4.0000}{2*0.875*0.48773} = 3022.7 \text{ PSI}, 20.841 \text{ MPa}$ ②

Bending Stress

Short Side Plates:

$$(S_b)_N = \pm \frac{P*c_1}{12l_1*e_b} \left[1.5H^2 - h^2 \frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{645*0.25000}{12*0.0104167*1.00000} \left[1.5 * 4.0000^2 - 5.6250^2 * \frac{1+0.71111^2*3.81111}{1+3.81111} \right] = 6126.3 \text{ PSI}, 42.239 \text{ MPa}$$
 ③

$$(S_b)_Q = \pm \frac{P*h^2 *c_1}{12*I_1} \left[\frac{1+\alpha^2 *K}{1+K} \right] = \pm \frac{645*5.6250^2 *0.25000}{12*0.0104167} \left[\frac{1+0.71111^2*3.81111}{1+3.81111} \right] = \pm 24833.7 \text{ PSI}, 171.222 \text{ MPa}$$
 ④

Long Side Plates:

$$(S_t)_M = \pm \frac{P*h^2 *c_2}{12l_2*e_b} \left[1.5 - \frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{645*5.6250^2 *0.43750}{12*0.0558268*0.48773} \left[1.5 - \frac{1+0.71111^2*3.81111}{1+3.81111} \right] = \pm 24363.2 \text{ PSI}, 167.978 \text{ MPa}$$
 ⑤

$$(S_t)_Q = \pm \frac{P*h^2 *c_2}{12l_2} \left[\frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{645*5.6250^2 *0.43750}{12*0.0558268} \left[\frac{1+0.71111^2*3.81111}{1+3.81111} \right] = \pm 8109.0 \text{ PSI}, 55.909 \text{ MPa}$$
 ⑥

Combined Stress (Not to Exceed 30000 PSI)

Short Side Plates:

$$(S_T)_N = ① + ③ = 3628.1 \text{ PSI}, 25.015 \text{ MPa} + 6126.3 \text{ PSI}, 42.239 \text{ MPa} = 9754.4 \text{ PSI}, 67.254 \text{ MPa}$$
 ⑦

$$(S_T)_Q = ① + ④ = 3628.1 \text{ PSI}, 25.015 \text{ MPa} + 24833.7 \text{ PSI}, 171.222 \text{ MPa} = 28461.8 \text{ PSI}, 196.237 \text{ MPa}$$
 ⑧

Long Side Plates:

$$(S_T)_M = ② + ⑤ = 3022.7 \text{ PSI}, 20.841 \text{ MPa} + 24363.2 \text{ PSI}, 167.978 \text{ MPa} = 27385.9 \text{ PSI}, 188.819 \text{ MPa}$$
 ⑨

$$(S_T)_Q = ② + ⑥ = 3022.7 \text{ PSI}, 20.841 \text{ MPa} + 8109.0 \text{ PSI}, 55.909 \text{ MPa} = 11132 \text{ PSI}, 76.750 \text{ MPa}$$
 ⑩

End Plate Thickness (Per UG-34)

Where T_M = Minimum Thickness

$$T_M = C.A. + H * \sqrt{\left[\left(3.4 - 2.4 * \frac{H}{h} \right) * \left(\frac{0.2 * P}{S} \right) \right]}$$

$$T_M = \text{Error! Reference source not found.} + \text{Error! Reference source not found.} * \sqrt{\left[\left(3.4 - 2.4 * \frac{4.0000}{5.6250} \right) * \left(\frac{0.2 * 645}{20000} \right) \right]} \\ = 0.418 \text{ in, } 10.618 \text{ mm}$$

End Plate Thickness Selected by Program: 0.500 in, 12.700 mm

Pipe and Tube Stresses

Where T_E = Effective Thickness

T_A = Actual Thickness

D_0 = Pipe or Tube Outer Diameter

R_0 = Pipe or Tube Outer Radius

T_M = Minimum Thickness

S = Stress

Nozzle 1 (2.375 inch O.D. X 0.218 in Thick Inlet Pipe, SA-106-GR B):

Allowable Stress: Not to Exceed 17100.0 PSI, 117.905 MPa

$$T_E = (T_A \times 0.875) - C.A. = (0.2180 \times 0.875) - 0.000 = 0.1907 \text{ in, } 4.8450 \text{ mm}$$

$$R_0 = D_0/2 = 2.3750/2 = 1.1875$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = 645 \left(\frac{1.1875}{0.1907} - 0.4 \right) = 3757.400 \text{ PSI } 25.907 \text{ MPa}$$

Nozzle 2 (2.375 inch O.D. X 0.218 in Thick Outlet Pipe, SA-106-GR B):

Allowable Stress: Not to Exceed 17100.0 PSI, 117.905 MPa

$$T_E = (T_A \times 0.875) - C.A. = (0.2180 \times 0.875) - 0.000 = 0.1907 \text{ in, } 4.8450 \text{ mm}$$

$$R_0 = D_0/2 = 2.3750/2 = 1.1875$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = 645 \left(\frac{1.1875}{0.1907} - 0.4 \right) = 3757.400 \text{ PSI} \ 25.907 \text{ MPa}$$

Nozzle 3 (Not applicable, Nozzle 3 does not exist for this section):

Allowable Stress: Not applicable

$$T_E = (T_A \times 0.875) - \text{C.A.} = (\text{Not applicable} \times 0.875) - 0.000 = \text{Not applicable}$$

$$R_0 = D_0/2 = \text{Not applicable}/2 = \text{Not applicable}$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = \text{Not applicable} \left(\frac{\text{Not applicable}}{\text{Not applicable}} - 0.4 \right) =$$

Tubes (SA214(WLD)):

Tube Allowable Stress: 11400 PSI, 78.6 Mpa

$$T_M = \frac{P \times 0.5 \times D_O}{S + 0.4 \times P} = \frac{645 \times 0.5 \times 0.625}{11400 + 0.4 \times 645} = 0.017 \text{ in, } 0.439 \text{ mm}$$

Tube Wall Thickness Selected by Program: 0.060 in, 1.524 mm

Calculations Generated By: Name

ASME Code Calculations

Section VIII, Div. 1, Appendix 13, Fig 13-2(a), Sketch (1), 2013 Edition

Customer: McClung Energy

Purchase Order Number: 0014949-01

Date: 2/21/2018

ACE Job Number: 1721901-11

Section Name/Serial Number: IC2

Tag:

Header Material: SA-516-70 NORM

Code Allowable Stress, **S**: 20000 PSI (137.895 MPa)

Tube Diameter: 0.625 inch (15.88 mm)

Tube Pitch: 1.500 inch (38.100 mm)

C.A., Corrosion Allowance: 0.000 inch (0.0 mm)

P, Design Pressure: 1287 PSI (8.9 MPa)

Maximum Design Temperature: 350 deg F (177 deg C)

Minimum Design Temperature: -20 deg F (-29 deg C)

Stress Relief: No

Plug Type: TAPER

Overall Header Width: 5.2500 Inch (133.35 mm)

Overall Header Height: 6.750 inch (171.45 mm)

t₁, Short Side Plate Thickness, Corroded: 0.625 inch (15.88 mm)

t₂, Long Side Plate Thickness, Corroded: 1.625 inch (41.28 mm)

D_p, Plug Thread Diameter: 0.768 inch (19.52 mm)

Hydrostatic Test Pressure: 1673 PSI (11.5 MPa)

h, Long Inside Dimension, Corroded: 5.5000 inch (139.70 mm)

H, Short Inside Dimension, Corroded: 2.0000 inch (50.80 mm)

Calculated Variables

$$e_m = e_b = \frac{Tube\ Pitch - D_p}{Tube\ Pitch} = \frac{(1.500 - 0.7684)}{1.500} = 0.48773$$

$$\alpha = H/h = 2.0000/5.5000 = 0.36364$$

$$I_1 = \frac{(t_1)^3}{12} = \frac{(0.625)^3}{12} = 0.0203451 \quad I_2 = \frac{(t_2)^3}{12} = \frac{(1.625)^3}{12} = 0.3575846 \quad K = \alpha \frac{(I_2)}{(I_1)} = 0.36364 \frac{(0.3575846)}{(0.0203451)} = 6.39127$$

$$1 + \alpha^2 K = 1 + 0.36364^2 6.39127 = 1.84513$$

$$1 + K = 1 + 6.39127 = 7.39127$$

$$c_1 = 0.5 \times t_1 = 0.5 \times 0.625 = 0.31250 \quad c_2 = 0.5 \times t_2 = 0.5 \times 1.625 = 0.81250$$

Membrane Stress (Not to Exceed 20000 PSI)

Short Side Plates: $S_m = \frac{Ph}{2t_1*em} = \frac{1287*5.5000}{2*0.625*1.00000} = 7920.0 \text{ PSI}, 54.606 \text{ MPa}$ ①

Long Side Plates: $S_m = \frac{PH}{2t_2*em} = \frac{1287*2.0000}{2*1.625*0.48773} = 2271.1 \text{ PSI}, 15.659 \text{ MPa}$ ②

Bending Stress

Short Side Plates:

$$(S_b)_N = \pm \frac{P*c_1}{12l_1*e_b} \left[1.5H^2 - h^2 \frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{1287*0.31250}{12*0.0203451*1.00000} \left[1.5 * 2.0000^2 - 5.5000^2 * \frac{1+0.36364^2*6.39127}{1+6.39127} \right] = 3574.6 \text{ PSI}, 24.646 \text{ MPa}$$
 ③

$$(S_b)_Q = \pm \frac{P*h^2 *c_1}{12*I_1} \left[\frac{1+\alpha^2 *K}{1+K} \right] = \pm \frac{1287*5.5000^2 *0.31250}{12*0.0203451} \left[\frac{1+0.36364^2*6.39127}{1+6.39127} \right] = \pm 17398.6 \text{ PSI}, 119.959 \text{ MPa}$$
 ④

Long Side Plates:

$$(S_t)_M = \pm \frac{P*h^2 *c_2}{12l_2*e_b} \left[1.5 - \frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{1287*5.5000^2 *0.81250}{12*0.3575846*0.48773} \left[1.5 - \frac{1+0.36364^2*6.39127}{1+6.39127} \right] = \pm 26431.1 \text{ PSI}, 182.236 \text{ MPa}$$
 ⑤

$$(S_t)_Q = \pm \frac{P*h^2 *c_2}{12l_2} \left[\frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{1287*5.5000^2 *0.81250}{12*0.3575846} \left[\frac{1+0.36364^2*6.39127}{1+6.39127} \right] = \pm 2573.8 \text{ PSI}, 17.745 \text{ MPa}$$
 ⑥

Combined Stress (Not to Exceed 30000 PSI)

Short Side Plates:

$$(S_T)_N = ① + ③ = 7920.0 \text{ PSI}, 54.606 \text{ MPa} + 3574.6 \text{ PSI}, 24.646 \text{ MPa} = 11494.6 \text{ PSI}, 79.253 \text{ MPa}$$
 ⑦

$$(S_T)_Q = ① + ④ = 7920.0 \text{ PSI}, 54.606 \text{ MPa} + 17398.6 \text{ PSI}, 119.959 \text{ MPa} = 25318.6 \text{ PSI}, 174.566 \text{ MPa}$$
 ⑧

Long Side Plates:

$$(S_T)_M = ② + ⑤ = 2271.1 \text{ PSI}, 15.659 \text{ MPa} + 26431.1 \text{ PSI}, 182.236 \text{ MPa} = 28702.2 \text{ PSI}, 197.895 \text{ MPa}$$
 ⑨

$$(S_T)_Q = ② + ⑥ = 2271.1 \text{ PSI}, 15.659 \text{ MPa} + 2573.8 \text{ PSI}, 17.745 \text{ MPa} = 4845 \text{ PSI}, 33.404 \text{ MPa}$$
 ⑩

End Plate Thickness (Per UG-34)

Where T_M = Minimum Thickness

$$T_M = C.A. + H * \sqrt{\left[\left(3.4 - 2.4 * \frac{H}{h} \right) * \left(\frac{0.2 * P}{S} \right) \right]}$$

$$T_M = \text{Error! Reference source not found.} + \text{Error! Reference source not found.} * \sqrt{\left[\left(3.4 - 2.4 * \frac{2.0000}{5.5000} \right) * \left(\frac{0.2 * 1287}{20000} \right) \right]} \\ = 0.427 \text{ in, } 10.835 \text{ mm}$$

End Plate Thickness Selected by Program: 0.625 in, 15.875 mm

Pipe and Tube Stresses

Where T_E = Effective Thickness

T_A = Actual Thickness

D_0 = Pipe or Tube Outer Diameter

R_0 = Pipe or Tube Outer Radius

T_M = Minimum Thickness

S = Stress

Nozzle 1 (2.375 inch O.D. X 0.218 in Thick Inlet Pipe, SA-106-GR B):

Allowable Stress: Not to Exceed 17100.0 PSI, 117.905 MPa

$$T_E = (T_A \times 0.875) - C.A. = (0.2180 \times 0.875) - 0.000 = 0.1907 \text{ in, } 4.8450 \text{ mm}$$

$$R_0 = D_0/2 = 2.3750/2 = 1.1875$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = 1287 \left(\frac{1.1875}{0.1907} - 0.4 \right) = 7497.323 \text{ PSI } 51.694 \text{ MPa}$$

Nozzle 2 (2.375 inch O.D. X 0.218 in Thick Outlet Pipe, SA-106-GR B):

Allowable Stress: Not to Exceed 17100.0 PSI, 117.905 MPa

$$T_E = (T_A \times 0.875) - C.A. = (0.2180 \times 0.875) - 0.000 = 0.1907 \text{ in, } 4.8450 \text{ mm}$$

$$R_0 = D_0/2 = 2.3750/2 = 1.1875$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = 1287 \left(\frac{1.1875}{0.1907} - 0.4 \right) = 7497.323 \text{ PSI } 51.694 \text{ MPa}$$

Nozzle 3 (Not applicable, Nozzle 3 does not exist for this section):

Allowable Stress: Not applicable

$$T_E = (T_A \times 0.875) - \text{C.A.} = (\text{Not applicable} \times 0.875) - 0.000 = \text{Not applicable}$$

$$R_0 = D_0/2 = \text{Not applicable}/2 = \text{Not applicable}$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = \text{Not applicable} \left(\frac{\text{Not applicable}}{\text{Not applicable}} - 0.4 \right) =$$

Tubes (SA214(WLD)):

Tube Allowable Stress: 11400 PSI, 78.6 Mpa

$$T_M = \frac{P \times 0.5 \times D_O}{S + 0.4 \times P} = \frac{1287 \times 0.5 \times 0.625}{11400 + 0.4 \times 1287} = 0.034 \text{ in, } 0.857 \text{ mm}$$

Tube Wall Thickness Selected by Program: 0.060 in, 1.524 mm

Calculations Generated By: Name

ASME Code Calculations

Section VIII, Div. 1, Appendix 13, Fig 13-2(a), Sketch (1), 2013 Edition

Customer: McClung Energy

Purchase Order Number: 0014949-01

Date: 2/21/2018

ACE Job Number: 1721901-11

Section Name/Serial Number: AC

Tag:

Header Material: SA-516-70 NORM

Code Allowable Stress, **S**: 20000 PSI (137.895 MPa)

Tube Diameter: 0.625 inch (15.88 mm)

Tube Pitch: 1.500 inch (38.100 mm)

C.A., Corrosion Allowance: 0.000 inch (0.0 mm)

P, Design Pressure: 1800 PSI (12.4 MPa)

Maximum Design Temperature: 350 deg F (177 deg C)

Minimum Design Temperature: -20 deg F (-29 deg C)

Stress Relief: No

Plug Type: TAPER

Overall Header Width: 5.2500 Inch (133.35 mm)

Overall Header Height: 6.750 inch (171.45 mm)

t₁, Short Side Plate Thickness, Corroded: 0.625 inch (15.88 mm)

t₂, Long Side Plate Thickness, Corroded: 1.625 inch (41.28 mm)

D_p, Plug Thread Diameter: 0.768 inch (19.52 mm)

Hydrostatic Test Pressure: 2340 PSI (16.1 MPa)

h, Long Inside Dimension, Corroded: 5.2500 inch (133.35 mm)

H, Short Inside Dimension, Corroded: 2.0000 inch (50.80 mm)

Calculated Variables

$$e_m = e_b = \frac{Tube\ Pitch - D_p}{Tube\ Pitch} = \frac{(1.500 - 0.7684)}{1.500} = 0.48773$$

$$\alpha = H/h = 2.0000/5.2500 = 0.76190$$

$$I_1 = \frac{(t_1)^3}{12} = \frac{(0.625)^3}{12} = 0.0558268 \quad I_2 = \frac{(t_2)^3}{12} = \frac{(1.625)^3}{12} = 0.2166341 \quad K = \alpha \frac{(I_2)}{(I_1)} = 0.76190 \frac{(0.2166341)}{(0.0558268)} = 2.95655$$

$$1 + \alpha^2 K = 1 + 0.76190^2 2.95655 = 2.71627$$

$$1 + K = 1 + 2.95655 = 3.95655$$

$$c_1 = 0.5 \times t_1 = 0.5 \times 0.625 = 0.43750 \quad c_2 = 0.5 \times t_2 = 0.5 \times 1.625 = 0.68750$$

Membrane Stress (Not to Exceed 20000 PSI)

Short Side Plates: $S_m = \frac{Ph}{2t_1*em} = \frac{1800*5.2500}{2*0.625*1.00000} = 5400.0 \text{ PSI}, 37.232 \text{ MPa}$ ①

Long Side Plates: $S_m = \frac{PH}{2t_2*em} = \frac{1800*2.0000}{2*1.625*0.48773} = 5368.1 \text{ PSI}, 37.011 \text{ MPa}$ ②

Bending Stress

Short Side Plates:

$$(S_b)_N = \pm \frac{P*c_1}{12l_1*e_b} \left[1.5H^2 - h^2 \frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{1800*0.43750}{12*0.0558268*1.00000} \left[1.5 * 2.0000^2 - 5.2500^2 * \frac{1+0.76190^2*2.95655}{1+2.95655} \right] = 5968.8 \text{ PSI}, 41.153 \text{ MPa}$$
 ③

$$(S_b)_Q = \pm \frac{P*h^2 * c_1}{12*I_1} \left[\frac{1+\alpha^2 * K}{1+K} \right] = \pm \frac{1800*5.2500^2 * 0.43750}{12*0.0558268} \left[\frac{1+0.76190^2*2.95655}{1+2.95655} \right] = \pm 22243.4 \text{ PSI}, 153.363 \text{ MPa}$$
 ④

Long Side Plates:

$$(S_t)_M = \pm \frac{P*h^2 * c_2}{12l_2*e_b} \left[1.5 - \frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{1800*5.2500^2 * 0.68750}{12*0.2166341*0.48773} \left[1.5 - \frac{1+0.76190^2*2.95655}{1+2.95655} \right] = \pm 21883.5 \text{ PSI}, 150.881 \text{ MPa}$$
 ⑤

$$(S_t)_Q = \pm \frac{P*h^2 * c_2}{12l_2} \left[\frac{1+\alpha^2 K}{1+K} \right] = \pm \frac{1800*5.2500^2 * 0.68750}{12*0.2166341} \left[\frac{1+0.76190^2*2.95655}{1+2.95655} \right] = \pm 9007.7 \text{ PSI}, 62.106 \text{ MPa}$$
 ⑥

Combined Stress (Not to Exceed 30000 PSI)

Short Side Plates:

$$(S_T)_N = ① + ③ = 5400.0 \text{ PSI}, 37.232 \text{ MPa} + 5968.8 \text{ PSI}, 41.153 \text{ MPa} = 11368.8 \text{ PSI}, 78.385 \text{ MPa}$$
 ⑦

$$(S_T)_Q = ① + ④ = 5400.0 \text{ PSI}, 37.232 \text{ MPa} + 22243.4 \text{ PSI}, 153.363 \text{ MPa} = 27643.4 \text{ PSI}, 190.595 \text{ MPa}$$
 ⑧

Long Side Plates:

$$(S_T)_M = ② + ⑤ = 5368.1 \text{ PSI}, 37.011 \text{ MPa} + 21883.5 \text{ PSI}, 150.881 \text{ MPa} = 27251.6 \text{ PSI}, 187.893 \text{ MPa}$$
 ⑨

$$(S_T)_Q = ② + ⑥ = 5368.1 \text{ PSI}, 37.011 \text{ MPa} + 9007.7 \text{ PSI}, 62.106 \text{ MPa} = 14376 \text{ PSI}, 99.117 \text{ MPa}$$
 ⑩

End Plate Thickness (Per UG-34)

Where T_M = Minimum Thickness

$$T_M = C.A. + H * \sqrt{\left[\left(3.4 - 2.4 * \frac{H}{h} \right) * \left(\frac{0.2 * P}{S} \right) \right]}$$

$$T_M = \text{Error! Reference source not found.} + \text{Error! Reference source not found.} * \sqrt{\left[\left(3.4 - 2.4 * \frac{2.0000}{5.2500} \right) * \left(\frac{0.2 * 1800}{20000} \right) \right]} \\ = 0.673 \text{ in, } 17.087 \text{ mm}$$

End Plate Thickness Selected by Program: 0.875 in, 22.225 mm

Pipe and Tube Stresses

Where T_E = Effective Thickness

T_A = Actual Thickness

D_0 = Pipe or Tube Outer Diameter

R_0 = Pipe or Tube Outer Radius

T_M = Minimum Thickness

S = Stress

Nozzle 1 (1.900 inch O.D. X 0.200 in Thick Inlet Pipe, SA-106-GR B):

Allowable Stress: Not to Exceed 17100.0 PSI, 117.905 MPa

$$T_E = (T_A \times 0.875) - C.A. = (0.2000 \times 0.875) - 0.000 = 0.1750 \text{ in, } 4.4450 \text{ mm}$$

$$R_0 = D_0/2 = 1.9000/2 = 0.9500$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = 1800 \left(\frac{0.9500}{0.1750} - 0.4 \right) = 9051.429 \text{ PSI } 62.410 \text{ MPa}$$

Nozzle 2 (2.375 inch O.D. X 0.218 in Thick Outlet Pipe, SA-106-GR B):

Allowable Stress: Not to Exceed 17100.0 PSI, 117.905 MPa

$$T_E = (T_A \times 0.875) - C.A. = (0.2180 \times 0.875) - 0.000 = 0.1907 \text{ in, } 4.8450 \text{ mm}$$

$$R_0 = D_0/2 = 2.3750/2 = 1.1875$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = 1800 \left(\frac{1.1875}{0.1907} - 0.4 \right) = 10485.767 \text{ PSI } 72.299 \text{ MPa}$$

Nozzle 3 (Not applicable, Nozzle 3 does not exist for this section):

Allowable Stress: Not applicable

$$T_E = (T_A \times 0.875) - C.A. = (\text{Not applicable} \times 0.875) - 0.000 = \text{Not applicable}$$

$$R_0 = D_0/2 = \text{Not applicable}/2 = \text{Not applicable}$$

$$S = P \left(\frac{R_0}{T_E} - 0.4 \right) = \text{Not applicable} \left(\frac{\text{Not applicable}}{\text{Not applicable}} - 0.4 \right) =$$

Tubes (SA214(WLD)):

Tube Allowable Stress: 11400 PSI, 78.6 Mpa

$$T_M = \frac{P \times 0.5 \times D_O}{S + 0.4 \times P} = \frac{1800 \times 0.5 \times 0.625}{11400 + 0.4 \times 1800} = 0.046 \text{ in, } 1.179 \text{ mm}$$

Tube Wall Thickness Selected by Program: 0.060 in, 1.524 mm

Calculations Generated By: Name

MULTI-WING[®] AMERICA, INC.

ISO 9001-2000

A Crowley Company

Multi-Wing Z Series Fans Blade Pitch Angle Setting Instructions

Before You Begin:

To maintain balance of fan:

- Mark the hub castings across a joint, so the fan hub can be reassembled in the same orientation.
- Mark the location of any balancing weight. Balancing weight will be on the outer bolt circle, in the form of washers, and/or longer bolts, or an additional balancing nut.
- Number the blades and blade sockets, so that they are replaced into their original position.

If possible, note the location of the pitch setting pin in the blade socket when disassembling the fan, and whether pin is located in the Hub or Retainer half of the fan (see step 7 for detailed definition).

Step 1 – Determine Blade Type: “1Z”, “2Z”, “4Z”, “5Z”, or “6Z”

If the blade has a sickle shape, then look for 1Z or 2Z molded on the blade.

If the blade is wider at the tip than at the base near the hub, then you have a 6Z.

Otherwise, look for 4Z or 5Z markings on blade which are in one of two places:

Look on cone section at base of blade (visible when fan is assembled), or

Look inside the bottom of the socket (blade must be removed from hub).

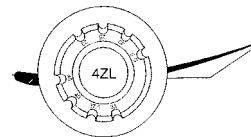
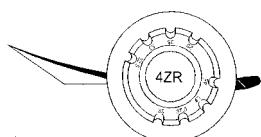
Alternatively, measure the width of the blade at the widest portion at base of blade:

4Z blade is approximately 4-1/2 inches, 5Z blade is approximately 5-1/4 inches.

Step 2 – Determine Rotation Code: “L” or “R”

R rotation rotates clockwise facing air discharge, L rotation is counterclockwise facing air discharge.

The 1Z and 2Z blade profiles have an arrow showing rotation molded into the blade on inlet side.



The 6Z is universal and can be used as an R or L rotation, depending on how pitch angle is set.

For 4Z and 5Z blades, the rotation code is molded into the blade, either on the cone section at base of blade, or inside bottom of the socket.

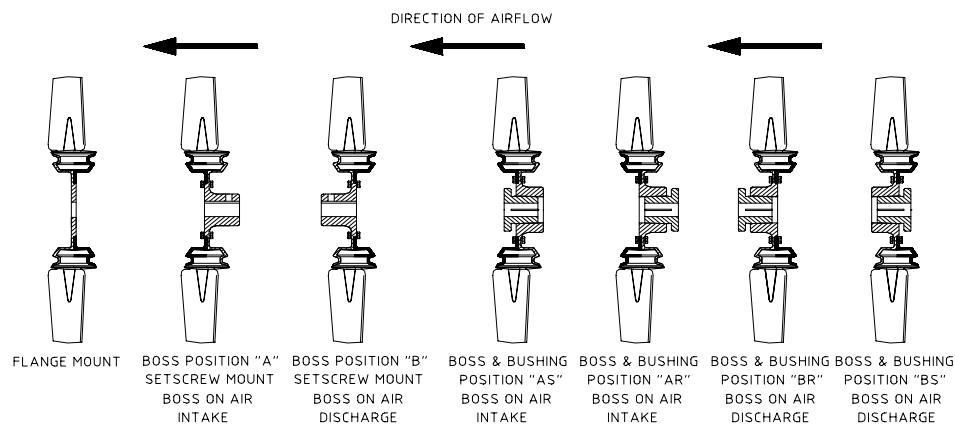
Examples of rotation for 4Z blades as viewed from end of socket are below, and 5Z is similar.

R, or clockwise

L, or counterclockwise

Step 3 – Determine Boss location code: “A” or “B”

The boss is the center section of the hub through which the fan is mounted to the shaft, and typically contains either setscrews or a center-tapered hole where the bushing inserts.


Select boss location A or B:

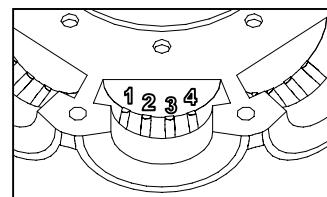
A is the boss on air inlet, including A, AR, and AS configurations.

B is the boss on air discharge, including B, BR, and BS.

See examples in drawing below.

For flange mounted (engine) fans, use boss location A for blower fans, and boss location B for suction fans.

Step 4 – Find Blade Pitch Angle: 20, 25, 27.5, 30, 32.5, 35, 37.5, 40, 45, or 50


The blade pitch angle can be found several ways:

First, by knowledge of the Multi-Wing fan part number.

The pitch angle precedes the blade material code in the part number. For example, the pitch angle is 30 degrees in this part number: 36-9-9/30/PPG/5ZR/ SH 1-3/8 /AS

Second, by careful disassembly with this method:

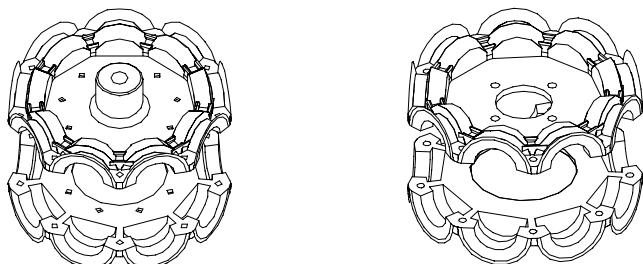
- Disassemble fan on flat surface, and note in which groove the pin is located. See number code in picture to the right.
- Using pictures in step 7 on next page, determine if the pin was in the hub (HUB) or retainer side (RET) of fan.
- Using table in step 6 below, find the possible blade pitch.
- Using table in step 5 below, select your blade angle based on whether your pin was in the HUB or RET.

Third, by calling a sales engineer at Multi-Wing America for assistance in selecting a blade pitch angle for your application.

Step 5 – Determine Hub/Retainer Code: “HUB” or “RET”

Find “HUB” or “RET” in chart below:

Type	Rotat- tion	Boss Pos.	Blade Pitch Angle									
			20°	25°	27.5°	30°	32.5°	35°	37.5°	40°	45°	50°
1Z,2Z,4Z	R or L	A	RET	RET	-	RET	RET	HUB	HUB	HUB	HUB	-
1Z,2Z,4Z	R or L	B	HUB	HUB	-	HUB	HUB	RET	RET	RET	RET	-
5Z	R or L	A	-	RET	-	RET	RET	RET	HUB	HUB	HUB	HUB
5Z	R or L	B	-	HUB	-	HUB	HUB	HUB	RET	RET	RET	RET
6Z	R	A	RET	RET	HUB	RET	HUB	RET	-	-	-	-
6Z	R	B	HUB	HUB	RET	HUB	RET	HUB	-	-	-	-
6Z	L	A	HUB	HUB	RET	HUB	RET	HUB	-	-	-	-
6Z	L	B	RET	RET	HUB	RET	HUB	RET	-	-	-	-

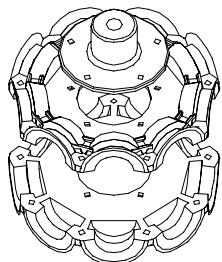

Step 6 – Determine Groove Number: 1 or 2 or 3 or 4

Find the groove number in chart below:

Type	Rotat- tion	Blade Pitch Angle									
		20°	25°	27.5°	30°	32.5°	35°	37.5°	40°	45°	50°
1Z,2Z,4Z	R	4	3	-	2	1	4	3	2	1	-
1Z,2Z,4Z	L	1	2	-	3	4	1	2	3	4	-
5Z	R	-	4	-	3	2	1	4	3	2	1
5Z	L	-	1	-	2	3	4	1	2	3	4
6Z	R	1	2	1	3	2	4	-	-	-	-
6Z	L	1	2	4	3	3	4	-	-	-	-

Step 7 – Final Assembly

Definition of HUB and RET for purposes of these instructions:

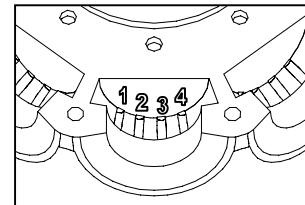

For 2-piece hubset like below:

Top half is the HUB, and bottom half is the RET or retainer ring.

Step 7 – Final Assembly continued

For 3-piece hubset as below:

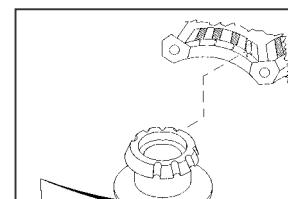
Top two pieces together are considered the HUB, and bottom piece is considered the RET or retainer ring.


Using the HUB or RET code found in Step 5:

If code is HUB, place the hub down on work surface first (one or two pieces, depending on above).
If code is RET, place one retainer ring only down on the work surface first.

A weighted coffee can could be used to elevate the fan from the work surface.

Using the Groove Number found in Step 6:


Using picture to right, place the locking pin in the groove number that you found in Step 6 above.

Finally, Insert Blades:

- Place the blade over the pin in the hub/retainer blade socket, so that the pin also fits into the appropriate pitch angle groove in the blade. See example picture to the right.

For 6Z fans, use the pitch angle groove in the blade marked with your rotation (R or L) and pitch angle. Example: L35 is “L” rotation and 35-degree pitch angle.

- Repeat for all blades.
- Assemble hubset together, aligning the match marks you made.
- Replace any balancing weight to its original position.
- To finish, tighten the bolts in a cross pattern to 5 to 6 foot-pounds of torque.

INSTRUCTIONS FOR BLADE PITCH ADJUSTMENT FOR THE LARGE SERIES MULTI-WING W BLADES

- 1) NOTE ORIGINAL POSITION OF RETAINING PLATES, CENTER BOSS AND ALL HARDWARE INCLUDING ADDITIONAL HARDWARE USED FOR BALANCING
- 2) REMOVE **ALL** THE BOLTS AND NUTS.
- 3) DETERMINE BLADE ROTATION – ON THE CONCAVE SIDE OF THE BLADE IS A BLADE MARKING SHOWING 6WR, 6WL, 7WL, 7WR, OR 9WR. THE “L” AND “R” DENOTE THE ROTATION OF THE BLADE.
- 4) REPLACE THE PITCH INSERT IN THE BLADE ROOT WITH AN INSERT OF THE DESIRED PITCH.

PITCH IS DETERMINED BY COUNTING DIAL MARKS ON THE INSERT FROM THE SIDE OF APPROPRIATE BLADE ROTATION FOUND IN STEP 3. EACH LARGE MARK REPRESENTS 5 DEGREES. THE ENDS OF THE INSERT ARE 20 AND 50 DEGREES ACCORDINGLY.

- 5) REPLACE BLADES TO THEIR ORIGINAL LOCATION.
- 6) REPLACE ALL NUTS, BOLTS, AND WASHERS ON THE FAN HUB.
- 7) REPLACE RETAINING PLATES AND CENTER BOSS TO ORIGINAL LOCATION.
- 7) TIGHTEN NUTS AND BOLTS TO:
14 FOOT POUNDS OF TORQUE

(REV. 9/7/05)

Multi-Wing America
A Crowley Company

P.O. Box 425
15030 Berkshire Industrial Pk.
Burton, Ohio 44021

info@multi-wing.net
www.multi-wing.net

Ph. 440 834 9400
Fax 440 834 0449
Toll free 800 311 8465

ISO 9001 QEC-15013
SAI Global

D-3153 Pneumatic Actuator

Product Bulletin

D-3153-xxxx Series

Code No. LIT-2681054P

Issued April 28, 2010

Supersedes May 1, 1996

The D-3153 Pneumatic Actuator is a multipurpose positioning device used primarily for operating ventilating dampers in response to the output signals of a pneumatic controller or electro-pneumatic transducer.

The D-3153 Pneumatic Actuator is used with dampers up to a maximum area of 16 ft² (1.5 m²) for proportional volume control, and 25 ft² (2.3 m²) for 2-position actuation (provided that the torque requirements are compatible with the specific application).

The D-3153 Pneumatic Actuator component is recognized by Underwriters Laboratories Inc.® (UL) for use on UL classified 555/555S smoke and combination fire/smoke dampers which have been tested and approved to a degradation temperature of 250°F (121°C).

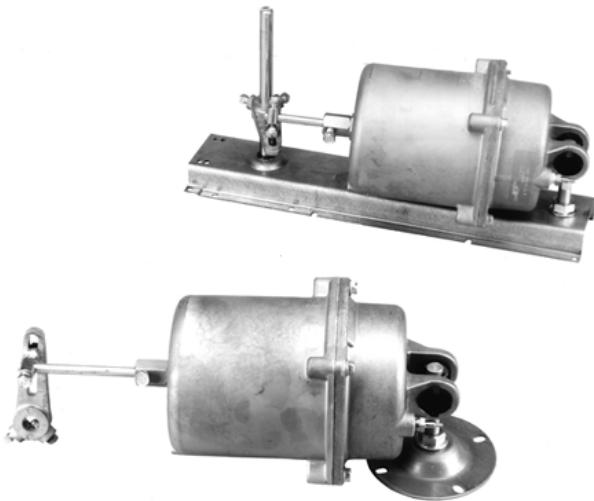


Figure 1: D-3153 Pneumatic Actuator

Table 1: Features and Benefits

Features	Benefits
All-aluminum Housing	Creates a lightweight, non-combustible actuator
Telescoping Linkage	Provides fast, flexible installation
Long Life and Reliable Design	Places over a million actuators now in service
2-way Swivel Head	Ensures full power delivery
Agency Recognition	Provides a UL recognized component for fire and smoke applications to 250°F (121°C)

Application

When used with proportional control, the damper size is limited to 16 ft² (1.5 m²) maximum. As a 2-position control, damper size is limited to 25 ft² (2.3 m²).

Three nominal spring ranges are available:

- 3 to 7 psi (21 to 49 kPa), D-3153-7
- 5 to 10 psi (35 to 70 kPa), D-3153-3 and -6
- 8 to 13 psi (56 to 91 kPa), D-3153-1, -2, -4, -5, and -18

The control air pressure for normal Heating, Ventilating, and Air Conditioning (HVAC) operation is 0-20 psig (0-138 kPa). The minimum control pressure for safety damper functions is 20 psig (138 kPa) with the maximum pressure of 30 psig (207 kPa). When used for both proportional and safety applications, provide a separate air signal to override normal HVAC operation and cause safety damper functions.

The D-3153 Pneumatic Actuator incorporates several internal and external features that add functional flexibility. A 2-way swivel connection on the actuator cylinder head provides non-binding movement.

All actuators have a telescoping piston rod for easy linkage of the damper for attachment points up to 8-3/4 in. (222 mm) away from the face of the actuator. A swivel ball joint and slotted crank arm connector are furnished on all actuators for optional methods of linkage to the damper.

The UL recognized component D-3153 Pneumatic Actuators, with universal and auxiliary mounting brackets, are specifically designed for use with Johnson Controls® safety dampers up to 250°F (121°C).

Operation

Air pressure from a pneumatic controller is applied to the diaphragm of the actuator, which moves the piston against the forces of the internal spring and the load. The external load force shifts the operating range from the nominal spring range. The piston moves to a position where the applied force and the spring, plus external forces, are in equilibrium. However, with a pilot positioner added, the piston moves to a position proportional to the control signal regardless of the load.

Installation

Two standard mounting packages are available with the D-3153 Pneumatic Actuator. The models with universal mounting bracket assemblies provide all of the parts and instructions required for applying the actuator to Johnson Controls D-1300 damper applications: duct (wall) mounting or frame mounting, either normally open or normally closed.

The auxiliary mounting bracket assembly facilitates applying the D-3153 Pneumatic Actuator to allied equipment manufacturer's products, and non Johnson Controls installations for actuator conversions. These assemblies are furnished with a crank arm linkage and pedestal style bracket. Two positions are provided on the pivot post for attaching the actuator to the mounting bracket so that force can be more directly applied to linkage points that are neither perpendicular nor parallel to the actuator mounting plane.

A stop screw kit is available for special applications to limit the power stroke of the actuator when required. A 4 ft (122 cm) linkage rod is also available for special applications to reach extended linkage when required.

Where precision sequential operation is desired, or additional positioning power is necessary, use a D-9502 positioner. Up to four more D-3153 Pneumatic Actuators may be slaved from one pilot for coupled dampers. A D-9502 kit is also available to enable 2-stage actuator control for providing minimum outdoor air during occupation (refer to the *D-9502 Pneumatic Damper Actuator Positioner Product Bulletin [LIT-1628399P]*).

Refer to the *D-3153 with Universal Mounting Bracket Installation Bulletin* (Part No. 34-188-18) and the *D-3153 with Auxiliary Mounting Bracket Installation Bulletin* (Part No. 34-154-19) for more details.

Repair Information

Do not make field repairs. If the D-3153 Pneumatic Actuator fails to operate within its specifications, replace the unit. For a replacement actuator, contact the nearest Johnson Controls representative.

Table 2: Force Values at 20 psig (140 kPa) Supply

Spring Range, psig (kPa)	Stroke	Force, lb (Newton)	Torque Output for 90° Rotation
8 to 13 (56 to 91)	Power	105 (467)	158 in-lb (18 N·m)
	Return	120 (534)	180 in-lb (20 N·m)
5 to 10 (35 to 70)	Power	150 (667)	225 in-lb (25 N·m)
	Return	75 (334)	113 in-lb (13 N·m)
3 to 7 (21 to 49)	Power	195 (867)	293 in-lb (33 N·m)
	Return	45 (200)	68 in-lb (8 N·m)

Dimensions

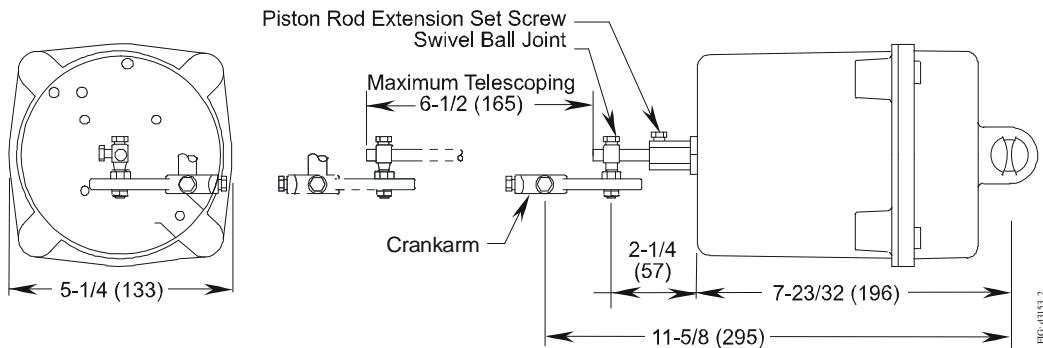


Figure 2: D-3153 Pneumatic Actuator Dimensions, in. (mm)

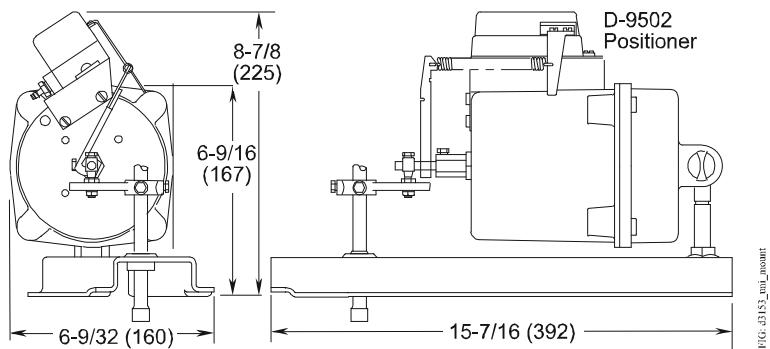


Figure 3: D-3153 Pneumatic Actuator with Universal Mounting Bracket Dimensions, in. (mm)

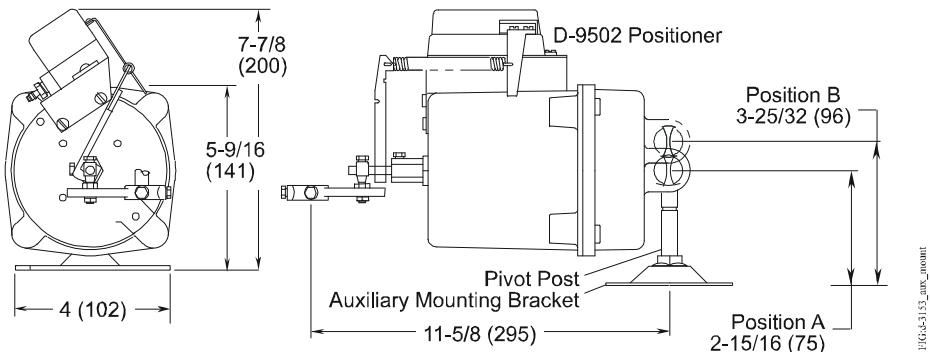


Figure 4: D-3153 Pneumatic Actuator with Auxiliary Mounting Bracket Dimensions, in. (mm)

Table 3: Ordering Information

Nominal Spring Range, psig (kPa)	With Universal Mounting Bracket	With Auxiliary Mounting Bracket	Body Only
8 to 13 (56 to 91)	D-3153-2	D-3153-5	D-3153-6003
8 to 13 (56 to 91) with D-9502	D-3153-1	D-3153-4	—
0 to 3 (0 to 21) and 9 to 13 (63 to 91) with 2-stage Pilot	—	D-3153-18	—
5 to 10 (35 to 70)	D-3153-3	D-3153-6	D-3153-6002
3 to 7 (21 to 49)	—	D-3153-7	D-3153-6001

Table 4: Accessories (Order Separately)

Description	Shipping Weight, lb (kg)	Code Number
Rubber Boot Kit	0.2 (0.09)	D-3073-100
Ball Joint, weather resistant	0.3 (0.11)	D-3073-604
Blade Arm Kit	1.0 (0.45)	D-9999-100
Crank Arm, 1/2 in. adjustable to 2-3/4 in. radius	0.5 (0.23)	D-3153-101
Crank Arm, 3/8 in. adjustable to 2-3/4 in. radius	0.5 (0.23)	D-3153-108
Crank Arm, 7/16 in. adjustable to 2-3/4 in. radius	0.5 (0.23)	D-3153-109
Linkage Rod, 4 ft (122 cm)	2.0 (0.91)	D-3153-102
Linkage Rod, replacement	1.0 (0.45)	D-3153-103
Stop Screw Kit, 1/4 – 24 x 3 in.	0.5 (0.23)	D-3153-104
Proportional Pilot Positioner Kit ¹	2.0 (0.91)	D-9502-8
Ball Joint	0.5 (0.23)	D-9999-104
Pivot Post, 5 per kit	0.5 (0.23)	D-3153-110
E-rings for Pivot Post, 10 per kit	0.5 (0.23)	D-3153-111
Mounting Nuts for Pivot Post, 10 per kit	0.5 (0.23)	D-3153-112
Universal Mounting Bracket	3.5 (1.13)	D-3153-105
Auxiliary Mounting Bracket	1.0 (0.45)	D-3153-106
2-stage Positioner Kit ¹	2.0 (0.91)	D-9502-9

1. Positioner kit includes positioner, mounting plate, spring, and mounting hardware.

Technical Specifications

D-3153 Pneumatic Actuator

Product	D-3153 Pneumatic Actuators			
Stroke	3 in. (76 mm)			
Control Air Pressure	0-20 psig (0-138 kPa) for HVAC 20 psig (138 kPa) minimum for safety damper functions 30 psig (207 kPa) maximum without pilot			
Air Connections	1/8 in. NPT straight barbed fitting for 5/32 in. or 1/4 in. O.D. polytubing (furnished) compression fitting for 1/4 in. O.D. copper tubing (optional)			
Ambient Operating Conditions	-20 to 150°F (-29 to 66°C)			
Effective Diaphragm Area	15 in. ² (97 cm ²)			
Materials	Body: Die-cast Aluminum; Diaphragm: Synthetic elastomer			
Dimensions (H x W x D)	See Figure 2, Figure 3, and Figure 4			
Shipping Weight, lb (Kg)	D-3153-1 11.5 (5.2)	D-3153-3 10.0 (4.5)	D-3153-5 8.5 (3.9)	D-3153-7 8.5 (3.9)
	D-3153-2 10.0 (4.5)	D-3153-4 10.5 (4.8)	D-3153-6 8.5 (3.9)	D-3153-18 10.5 (4.8)
Compliance	UL recognized component to 250°F (121°C) with compression fitting for copper tubing, File No. R15581, D-3153-42 and D-3153-43 ULC Listed			

For application at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products.

Building Efficiency
507 E. Michigan Street, Milwaukee, WI 53202

Metasys® and Johnson Controls® are registered trademarks of Johnson Controls, Inc.
All other marks herein are the marks of their respective owners. © 2010 Johnson Controls, Inc.

(See other side for Installation Instructions)

DISASSEMBLY —

1. Remove set collars.
2. Remove seals.
3. Remove MICRO-LOCK screw and key. (Do not lose nylon washer).
4. Remove threaded cover by turning counter clockwise.
5. Place housing cover side down on arbor press with spacer blocks under housing.
6. Place a soft metal bar or wood block on face of inner ring and press bottom outer ring and inner ring assembly from housing.
7. To remove the back outer ring, large bore bearings from $4\frac{7}{16}$ " thru 7" have drive pin holes. The back outer ring of smaller bore size units may be removed with a bearing puller or hammer and drift.

REASSEMBLY —

1. Place housing cover side up on arbor press with spacer blocks under housing.
2. Press in back outer ring and seat against housing shoulder.
3. Insert inner ring assembly and rotate to seat rollers against back outer ring.
4. Press in front outer ring.
5. Install threaded cover, turning clockwise until inner ring resists rotation or misalignment.
6. Back off threaded cover one quarter turn — align cover slot with the nearest counter bored hole in housing. See ADJUSTMENT TABLE.
7. Install MICRO-LOCK key with nylon washer under head of screw.
8. Using a soft drift or block, rap face of inner ring on side opposite threaded cover to seat front outer ring. Inner ring assembly should rotate freely.
9. Install seals. **Z-Seal**—Place centering spring in seal groove with fingers facing up. Place U-shaped element on fingers. Place centering ring on element with projection on face up. Install snap ring so that projection on centering ring is between ends of snap ring. **K-Seal**—Place seal into seal groove with anti-rotation boss sticking up. Install snap ring so that the raised boss is between the snap ring ends. **M-Seal**—Place seal into seal groove with spring facing out. No snap ring is required with **M-Seal**.
10. Install collars.
11. Lubricate bearing with amount of grease shown in LUBRICATION TABLE. Rotate inner ring assembly during lubrication to assure distribution of grease in bearing.

LUBRICATION INSTRUCTIONS

GENERAL INFORMATION AND SELECTION

This information is to aid in the proper lubrication of Rex® bearings for the majority of applications. Standard bearings come prelubricated from the factory with Mobil Mobiilith AW2 grease. Mobilith AW2 is an N.L.G.I. Grade 2, EP (extreme pressure) grease with a lithium complex thickener. It can be used for high loads, and in some cases at temperatures as low as -40°F or as high as +350°F. For high speeds, other special service conditions, or for inquiries on other acceptable greases, please consult your local Rexnord representative or the Rex® Bearing Engineering Department. When rebuilding Rex® bearings for use in average operating conditions, the bearing should be lubricated with the amount of grease by weight as shown in the LUBRICATION TABLE.

RELUBRICATION

Bearings should be relubricated at regular intervals. The frequency and amount of lubricant will be determined by the type of service. General guidelines for relubrication frequency and amount are based upon the average application conditions. See LUBRICATION TABLE.

At high temperature, greases tend to degrade more rapidly and thus require fresh grease more frequently. In general, small amounts of grease added frequently provide better lubrication. Most greases will eventually harden, causing relubrication to become less effective. When this occurs, the bearing should be disassembled, cleaned, and lubricated per LUBRICATION TABLE. When equipment will not be in operation for some time, grease should be added to provide corrosion protection. This is particularly important for equipment exposed to severe weather.

AUTOMATIC LUBRICATION SYSTEMS

A variety of automatic relubrication systems are available for use with roller bearings. Key considerations are:

1. NLGI grade of grease used, consistent with system layout.
2. An amount/frequency combination necessary to replenish the grease.

MIXING OF GREASES

Mixing of any two greases should be checked with the lubricant manufacturer. If the grease bases are different they should not be mixed.

OIL LUBRICATION

Rex housing designs do not include oil sumps, thus are not readily used with static oil lubrication. However, they can be adapted to re-circulating oil systems provided an adequate drain size and proper seals are incorporated.

LUBRICATION TABLE

SHAFT SIZE — (INCHES)			GREASE WT. REQUIRED (OZ.)		RECOMMENDED NUMBER OF MONTHS BETWEEN RELUBRICATION* (BASED ON 40 HR. WK.)						ADJUSTMENT TABLE (AXIAL CLEARANCE)						
Single Collar Series 2000	Double Set Collar Heavy Duty Series 5000	Adapter Series 9000	To Lubricate Rebuilt Units	To Relubricate Units	RPM						2000 Series	5000 Series	9000 Series	Axial Clearance (inches)	FACTORY SETTING (AVG. SPEEDS)	RECOMMENDED THREADED COVER ADJUSTMENT FOR HIGH SPEEDS	
					100	300	500	1000	1750	3000							
$\frac{3}{4}$ - 1	0.4	0.1	12	8	5	2	1	$\frac{1}{2}$	$\frac{3}{4}$ thru $\frac{11}{16}$	$\frac{17}{16}$007-.012	2000 RPM	.012-.017	.005
$1\frac{1}{8}$ - $1\frac{1}{4}$	0.5	0.1							$1\frac{11}{16}$ thru 2	$1\frac{15}{16}$007-.012	1500 RPM	.012-.017	.005
$1\frac{7}{16}$ - $1\frac{1}{2}$	$1\frac{7}{16}$	0.6	0.1							$2\frac{3}{16}$ thru 3	$2\frac{15}{16}$	$2\frac{1}{2}$.010-.017	1250 RPM	.017-.024	.007
$1\frac{11}{16}$ - $1\frac{3}{4}$	$1\frac{1}{2}$ - $1\frac{11}{16}$	0.8	0.2							$3\frac{3}{16}$ thru 4	$3\frac{3}{16}$	$2\frac{11}{16}$ thru 4	.010-.017	1000 RPM	.017-.024	.007
$1\frac{15}{16}$ - 2	$1\frac{15}{16}$	0.9	0.2													
$2\frac{3}{16}$ - $2\frac{1}{4}$	2 - $2\frac{3}{16}$	$1\frac{15}{16}$ - 2	1.1	0.2	8	5	3	1	$\frac{1}{2}$...	$4\frac{3}{16}$ thru 5	$4\frac{3}{16}$	$3\frac{11}{16}$ thru 5	.010-.020	750 RPM	.020-.030	.010
$2\frac{3}{8}$ - $2\frac{1}{2}$	$2\frac{7}{16}$	$2\frac{3}{16}$	1.5	0.3													
$2\frac{11}{16}$ - 3	$2\frac{1}{2}$ - $2\frac{15}{16}$	$2\frac{7}{16}$ - $2\frac{1}{2}$	2.8	0.5													
$3\frac{3}{16}$ - $3\frac{1}{2}$	$3\frac{3}{16}$ - $3\frac{7}{16}$	$2\frac{11}{16}$ - 3	3.7	0.6													
$3\frac{11}{16}$ - 4	$3\frac{11}{16}$ - 4	$3\frac{3}{16}$ - $3\frac{7}{16}$	6.9	1.1	6	4	2	1	$\frac{1}{2}$...							
.....	$4\frac{3}{16}$ - $4\frac{1}{2}$	$3\frac{11}{16}$ - 4	8.4	1.5													
.....	$4\frac{15}{16}$ - 5	$4\frac{3}{16}$ - $4\frac{7}{16}$	14.3	2.5													
.....	$5\frac{7}{16}$	$4\frac{15}{16}$ - 5	22.1	4.0	4	2	1	$\frac{1}{2}$							
.....	$5\frac{15}{16}$ - 6	$5\frac{3}{16}$ - $5\frac{7}{16}$	25.3	4.5													
.....	$6\frac{7}{16}$ - 7	$5\frac{15}{16}$ - $6\frac{7}{16}$	33.0	6.0													

* Relubrication amounts and frequencies shown in the table are based on standard clearances, moderate loads, etc., which yield housing temperatures of 150°F or less. Lubrication practices indicate that the relubrication frequency should be doubled for every 20°F above that level.

Rexnord Corporation
Rex Bearing Division
2400 Curtiss St.
Downers Grove, IL 60515
Phone: 630/969-1770
FAX: 630/969-8827

BEARING MOUNTING PROCEDURE

SET COLLAR — FIXED UNITS ONLY

1. Position bearings on the shaft, applying all driving pressure to the face of the inner ring.
2. Align the bearing housing to its mounting base by measuring from the face of the inner ring to the face of the threaded cover. Where shimming is required — use full shims across housing base — not just at bolt holes.
3. Bolt housing securely to mounting base.
4. Tighten the set collar set screws on bearing closest to drive (or most important to axial location of shaft) to the shaft. Proper tightening torque can be found in SET SCREW TORQUE TABLE. **The remaining bearings should not be secured to the shaft at this time.** Alternate torquing of the screws to prevent unequal loading. If an Allen wrench is used as torque wrench, place length of pipe over the long end and pull until wrench begins to twist.
5. Rotate shaft under power to permit the remaining bearings to seek their natural running position on the shaft.
6. Shut off the power and torque down set screws in remaining bearings using procedure in Step 4.

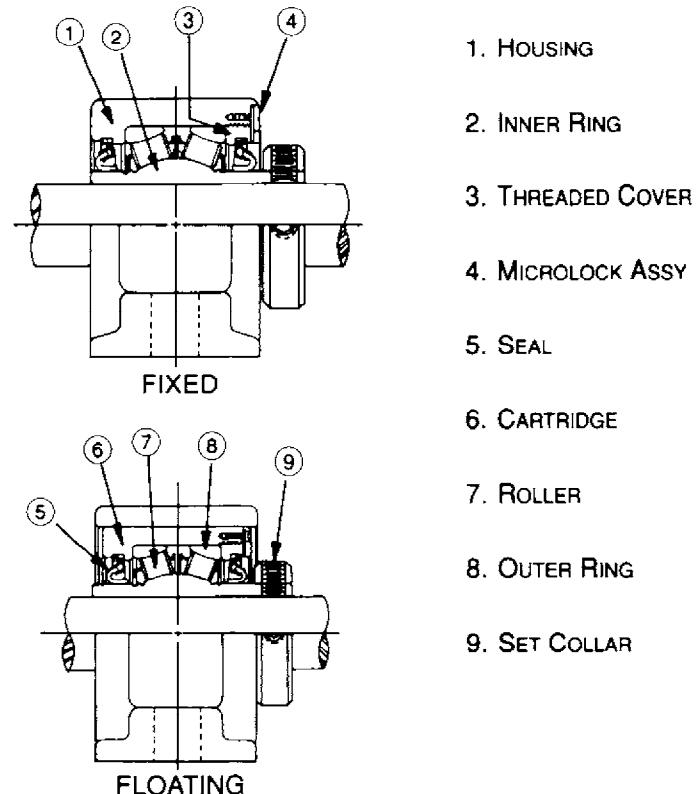
SET COLLAR — EXPANSION UNITS ONLY

1. Center cartridge in outer housing. If maximum expansion capability is required, place cartridge in extreme position of housing to permit full movement of cartridge in direction of expansion.
2. The remainder of the installation procedure is the same as Fixed Units, follow Steps 2, 3 and 4.

ADAPTER UNITS

- A. Free tapered split sleeve in bore of bearing by backing off locknut and rapping face of locknut.
- B. Position bearing on shaft with fixed bearing closest to drive (or most important to axial location of shaft).

GENERAL INSTALLATION COMMENTS


1. Shaft Journal areas must be free of burrs, cleaned of fretting corrosion and within the tolerance range shown in the SHAFT TOLERANCE TABLE.
2. Mounted units are prelubricated at the factory with a multi-purpose lithium soap grease. No additional grease is required at time of installation.
3. Position housings for:
 - a. accessibility of grease fittings.
 - b. if thrust is present — place thrust force against shoulder side of housing, not against threaded cover side.
4. If spacer shims are used for alignment they must cover the entire housing base.
5. Spot drill or mill flats on shaft for increased holding power of set screws or ease of removal.
6. When an eccentric load condition exists, position set screws directly opposite from eccentric weight.
7. Shaft shoulders are recommended to support vertical shafts and high thrust loads. The shoulder diameter should not exceed the outside diameter of the inner ring.
8. When pillow blocks are mounted on an inclined plane or the work force is parallel with the base, either lateral bolts or welded "stop blocks" should be used to prevent shifting.
9. Avoid direct hammer blows to the bearing and its components by using a soft drift or block.
10. New seals should be used whenever a bearing is rebuilt.

SET SCREW TORQUE TABLE			
Shaft Size (Inches)	Set Screw Size	Tightening Torque (Inch-Pounds)	
Normal Duty 2000 Series	Heavy Duty 5000 Series		
3/4 - 1 1/4	5/16	125
1 7/16 - 2	1 7/16 - 1 15/16	3/8	225
2 3/16 - 2 1/4	2 - 2 3/16	7/16	325
2 3/8 - 3 1/2	2 7/16 - 3 7/16	1/2	475
3 11/16 - 4	3 11/16 - 5 7/16	5/8	1150
....	5 15/16 - 7	3/4	1600

For more detailed instructions refer to the latest REXNORD CORP. Catalog.

SHAFT TOLERANCE TABLE — INCHES			
Nominal Shaft Size	Commercial Shaft Tolerance* (Cold Finished Steel, Low Carbon)	RECOMMENDED SHAFT TOLERANCES	
		Set Collar Mounting	Adapter Mounting
		Severe Loading or High Speed	
1-2	+.000 - .003	+.000 - .001	+.000 - .003
2-4	+.000 - .004	+.000 - .001	+.000 - .004
4-6	+.000 - .005	+.000 - .0015	+.000 - .005
6-8	+.000 - .006	+.000 - .0015	+.000 - .005

* Commercial shafting tolerances are normally satisfactory for low to moderate loads in slow to moderate speed applications.

Rexnord® 6000 Series Adapter Mounted Spherical Roller Bearing Units with SHURLOK® Technology Installation Instructions

Important -- Read Carefully

These instructions are provided to aid in the proper installation, operation, and maintenance of the Rexnord® adapter mounted spherical roller bearing units. They should be carefully read and followed. Failure to do so may result in unsatisfactory service as well as serious personal injury or property damage.

NOTE: IT IS IMPORTANT TO ALIGN THE ADAPTER SLEEVE LOCKING PIN WITH THE INNER RING KEYWAY BEFORE ASSEMBLING THE ADAPTER SLEEVE INTO THE INNER RING IF REMOVED. WHEN INSTALLING TWO FIXED BEARINGS, PLEASE REFER TO PAGE 2.

DO NOT OVERTIGHTEN BEARING OR WARRANTY WILL BE VOID. REFER TO TABLE 2, PAGE 2 FOR TIGHTENING INSTRUCTIONS.

CAUTION: The reliability built into all Rexnord® bearings can be realized in service only when they are correctly selected, properly installed, protected and maintained.

The correct selection of bearings or mounted units requires that the magnitude and nature of all loads, speed, alignment, mounting, operating requirements and maintenance be adequately considered. The selection of materials and design of housings, shafting, fasteners, seals, and accessories as well as provisions for installation and maintenance must follow good engineering principles.

Housings must be selected and installed with regard to the degree and direction of the forces that will occur. Housings should not be used under tension loads except with adequate safety factors. For this reason pillow blocks are best suited to withstand radial loads passing through the base. When heavy loads or shock loads are possible it is most important to mount a unit so that the line of force passes directly into its base so that the unit is directly and substantially supported other than through its mounting bolts. Where the line of force falls outside the base, such as with horizontal or uplift loads on pillow blocks, serious housing and fastener deflection or failure may occur. These conditions may require designs using different materials, fasteners, mounting design, stop bars, etc., together with proper safety factors. When these conditions are unavoidable, the Rexnord® Bearing Division should be consulted.

Please note the following important points:

A. Cleanliness

Keep dirt, water, and metal chips off all parts.

B. Careful Handling

Hammer blows, overheating, or improper use of force can damage precision parts.

C. Adapter Sleeve Tightening

Bearings must be correctly forced up their tapered adapter sleeves. Improperly tightened bearings and adapter assemblies may slip or turn on the shaft. When mounting these bearings on a used or worn shaft, care must be taken to clean up the shaft journal and rebuild, as necessary, to the required tolerances. Never replace bearings on a shaft which is bent or which has been damaged or softened by a torch.

D. Shaft Tolerances

These bearings can be mounted to commercially available shafts with standard undersized tolerances as shown in the following table:

Table 1 - Shaft Diameter Tolerances

Shaft Diameters	Tolerances
1" through 2"	Nominal to -.003"
2 1/16" through 4"	Nominal to -.004"
4 1/16" through 5"	Nominal to -.005"

E. Bolts

Housing mounting bolt tightness is important to prevent the housing from shifting and to adequately support loads.

F. Free Rotation and Alignment

Check for free rotation before machine startup to assure that final alignment is proper.

G. Lubrication

Units must be adequately lubricated. A bearing not properly lubricated can run to destruction and possibly cause damage to other components.

H. Installation in Extreme Temperatures

Use alternative installation instructions as outlined on Page 2, Step 5, if installing bearings in temperatures greater than 120°F or less than 20°F. The optical strain sensor may not indicate properly outside of this temperature range.

I. High Speed Applications

If the bearing will run at higher speeds than shown in Table 5, clearance must be adjusted. Refer to the clearance adjustment instructions on page 3.

INSTALLATION ONE FIXED AND ONE FLOATING UNIT

1. Check Shaft - Shafting must be clean, round, straight, free of burrs and nicks, and of correct size. Do not coat the shaft or adapter bore with a preservative, lubricant, or other substance such as LOCTITE®. Adapter mounted units are normally not detrimental to the shaft surface and the use of any preservative or lubricating medium is not required.

2. Assembly on Shaft - The adapter assembly is shipped inside the bearing. The adapter components do not need to be removed. **If you should happen to remove the adapter sleeve from the bearing during installation, you must align the locking pin mounted in the adapter sleeve with its matching keyway in the inner ring bore as shown in the picture below:**

Slide the bearings on the shaft to their intended positions. Back off the setscrews in the locknut so the locknut will turn easily. If the bearings do not slide freely down the shaft, slightly loosen the locknut by hand until the bearing is free to slide down the shaft. Position the bearings on the shaft with the fixed bearing closest to the drive. Align the housings square to the shaft, then tighten the mounting bolts.

3. Tighten the Adapter Assembly of the Fixed Bearing first – Make sure the shaft is locked so as not to rotate. Hand tighten the locknut to take out looseness, then use a hook type spanner wrench to bring the locknut to a snug fit.

If the adapter sleeve begins to slip around the shaft, then retain the sleeve using a second small hook type spanner wrench. Engage the second spanner wrench into the split area of the adapter sleeve. Position the wrench in the opposing direction of the first spanner wrench that is engaged in the locknut. Continue tightening until the adapter sleeve will no longer slip about the shaft.

Now mark the position of the locknut relative to the shaft with a grease pencil or a dark marker at the top of the locknut and shaft. Make sure the mark is legible and marks both the locknut and shaft at the same point.

Begin to tighten the locknut using one of these methods:

1. the special SHÜRLOK® installation tool with a $\frac{1}{2}$ or $\frac{3}{4}$ " drive breaker bar (see below)
2. a soft steel drift pin and a hammer
3. an impact type spanner wrench
4. a chain wrench

Bearing Size	SHÜRLOK® Installation Tool Part Number
115	105-90420-11
203	105-90420-21
206/207	105-90420-31
211/212/215	105-90420-41
303/307	105-90420-51
311/315	105-90420-61
403/407	105-90420-71
415	105-90420-81

Tighten the locknut clockwise about $\frac{3}{4}$ of a turn. Check the visual indicators for any color change. It is important to check both indicators. If neither indicator shows any color, continue tightening the locknut in $\frac{1}{8}$ turn increments while noting the condition of the visual indicators. The visual indicators are used to confirm the tightness in the mounting.

Table 2 - Final Locknut Adjustments

Shaft Size Range - in		Minimum Locknut Adjustment (Turn)	Maximum Locknut Adjustment (Turn)
From	To		
1 15/16	2 15/16	1	1 1/4
3 3/16	4 7/16	1 1/8	1 3/8
4 15/16	—	1	1 1/4

At least one of the visual indicators should show a color change. It is important to note that any of the color patterns shown here or any patterns in between are acceptable. The indication pattern does not need to be centered and may show on one side of the indicator only. Only one of the indicators needs to show color for the bearing to be properly tightened. If both of the indicators are still clear after tightening to the Minimum Locknut Adjustment in Table 2, then continue to tighten in $\frac{1}{8}$ turn increments. Discontinue tightening when at least one indicator shows a color change or the Maximum Locknut Adjustment in

Table 2 is reached. If the Maximum Locknut Adjustment is reached and neither indicator shows a color change, the unit should be dismounted. Remount the unit using the alternate method of mounting as shown in step 5.

4. Over-Tightening the Adapter Assembly – If the indicator starts to show yellow and/or red indication anywhere on the indicator, the mounting has been over-tightened. As shown in the following picture:

Over tightening can reduce too much bearing internal clearance and cause the bearing to run hot. To rectify this situation, simply impact the locknut in the counter clockwise direction which loosens the adapter assembly. When the adapter assembly becomes completely loose, start the tightening procedure again from step 3.

5. Alternate Mounting Method – If for any reason the visual indicator becomes damaged or no color change was seen in Step 3, this alternate method for mounting the adapter assembly must be used, otherwise skip to step 6.

Start at step 1 INSTALLATION, then hand tighten the locknut to take out looseness. Use a hook type spanner wrench to bring the locknut to a snug fit. If the adapter sleeve begins to slip around the shaft, then retain the sleeve using a second small hook type spanner wrench. Engage the second spanner wrench into the split area of the adapter sleeve. Position the wrench in the opposing direction of the first spanner wrench that is engaged in the locknut. Continue tightening until the adapter sleeve will no longer slip about the shaft.

Mark the position of the locknut relative to the shaft with a grease pencil or a dark marker at the top of the locknut and shaft. Make sure the mark is legible

and marks both the locknut and shaft at the same point. Tighten the locknut clockwise until the Maximum Locknut Adjustment is achieved in Table 2. When tightening the locknut, be sure to check the sleeve to make sure it does not turn on the shaft.

6. Secure Locknut – To secure the locknut from coming loose during operation, tighten the two radial setscrews positioned in the locknut to the following recommended seating torque with a hex type torque wrench. If one of the setscrews is lined up with the slot in the adapter sleeve, tighten the locknut clockwise until the setscrew clears the slot in the adapter sleeve. An alternate method for tightening these set screws is to use a hex wrench. Tighten the setscrew until the wrench takes a permanent twisting set.

While tightening the setscrews, the color of the indicator may change, become darker, lighter, or completely clear. This is acceptable as the bearing has already been properly tightened.

Table 3 - Locknut Setscrew Seating Torque

Shaft Size in	Seating Torque in - lbs
1 15/16	87 - 92
2 3/16	
2 3/8 - 2 7/16	
2 11/16 - 2 15/16	165 - 185
3 3/16 - 3 7/16	
3 11/16 - 3 15/16	
4 3/16 - 4 7/16	290 - 325
4 15/16	

7. Tighten the Floating Bearing - Center the floating bearing cartridge in the housing. Tighten the bearing to the shaft following the same procedure for the fixed bearing.

REMOVAL

Back out the locknut setscrews, then loosen the locknut in a counter-clockwise direction until the adapter assembly becomes completely loose. The bearing should slide freely along the shaft.

INSTALLATION TWO FIXED UNITS

When installing two fixed units on a shaft, special precautions need to be taken.

If you are installing two fixed pillow block units, tighten the mounting bolts of the first unit, then install it as shown in the INSTALLATION section. Install the second bearing as normal, then tighten its mounting bolts last. This ensures that the axial take-up of the adapter is compensated by the clearance in the mounting bolt holes.

If you are installing two fixed flange units, tighten the mounting bolts of the first unit and install as normal. Snug up the mounting bolts on the second unit. Now go through the INSTALLATION procedure to take out the adapter assembly looseness for the second bearing. After reaching a snug fit for the locknut, loosen the mounting bolts enough to allow for housing movement away from the mounting base. Housing movement should equal the required shim stock thickness shown in Table 4.

When using in a cartridge application and your equipment does not have the ability to provide floating capability, consult factory.

Table 4 - Shim Stock Thicknesses

Shaft Size Range – in		Shim Stock in
From	To	
1 15/16	2 3/16	.056
2 3/8	2 7/16	.063
2 11/16	2 15/16	.063
3 3/16	3 7/16	.080
3 11/16	3 15/16	.080
4 3/16	4 7/16	.094
4 15/16	—	.100

Now complete the installation of the second bearing. Once the second bearing has been mounted, place shim stock underneath each bolt pad between the housing base and the structure. Place the shim stock adjacent to each bolt on two sides about the shaft of the bolt to allow for uniform pressure under each bolt pad. Tighten housing mounting bolts to complete the installation.

BEARING UNIT REPLACEMENT

Disassembly

1. Remove adapter sleeve and locknut
2. Remove seals
3. Remove MICROLOCK screw and key. (Do not loose nylon washer)
4. Remove threaded cover by turning counter clockwise
5. Place housing threaded cover side down on arbor press with spacer blocks under housing
6. Place a soft metal bar or wood block on face of inner ring and press bottom outer ring and inner ring assembly from housing
7. To remove the back outer ring, large bore bearings 4 7/16" thru 7" have drive pin holes. The back outer ring of smaller size units may be removed with a bearing puller or hammer and drift.

Reassembly

1. Place housing cover side up on arbor press with spacer blocks under housing.
2. Press in back outer ring and seat against housing shoulder.
3. Insert inner ring assembly and rotate to seat rollers against back outer ring.
4. Press in front outer ring.
5. Install threaded cover, turning clockwise until inner ring resists rotation or misalignment.
6. Back off threaded cover one quarter turn – align cover slot with the nearest counter bored hole in housing. See Table 5 - ADJUSTMENT TABLE.
7. Install microlock key with nylon washer under the head of the screw.
8. Using a soft drift or block, rap face of inner ring on side opposite threaded cover to seat front outer ring. Inner ring assembly should rotate freely.
9. Install seals. Z-Seal – Place centering spring in seal groove with fingers facing up. Place U-shaped element on fingers. Place centering ring on element with projection on face up. Install snap ring so that projection on centering ring is between ends of snap ring. K-Seal – Place seal into the seal groove with anti rotation boss sticking up. Install snap ring so that the raised boss is between the snap ring ends. M-Seal – Place seal into seal groove with spring facing out. No snap ring is required with M-Seal.
10. Mount the bearing to the shaft per standard mounting instructions starting at Step 1, Page 1.
11. Lubricate bearing with amount of grease shown in Table 6 - LUBRICATION TABLE. Rotate inner ring assembly during lubrication to assure distribution of grease in bearing

Table 5 - Adjustment Table (AXIAL AND RADIAL CLEARANCES)

Size Code	SHAFT SIZE (INCHES)	FACTORY ADJUSTMENT (Average Speeds)		RECOMMENDED ADJUSTMENT HIGH SPEEDS			CLEARANCE ADJUSTMENT INCHES PER 1/12 TURN	
		6000 SERIES	STD AXIAL CLEARANCE	STD RADIAL CLEARANCE	SPEED OVER	AXIAL CLEARANCE	RADIAL CLEARANCE	AXIAL
2-4007-.012	.0022-.0037	2000	.012-.017	.0037-.0053	0.005	0.0016
5-6	1 15/16	.007-.012	.0020-.0034	1500	.012-.017	.0034-.0049	0.005	0.0014
7-9	2 3/16 – 2 15/16	.010-.017	.0026-.0044	1250	.017-.024	.0044-.0062	0.007	0.0018
10-11	3 3/16 – 3 15/16	.010-.017	.0025-.0043	1000	.017-.024	.0043-.0060	0.007	0.0018
12-13	4 3/16 – 4 15/16	.015-.025	.0032-.0054	750	.025-.035	.0054-.0076	0.010	0.0022

LUBRICATION

Rexnord® adapter mounted spherical roller bearing units are prelubricated. No additional lubricant is required for startup. As a precaution, if equipment is to be built and left idle for any period of time prior to actual use, the units should be filled 100% full to provide maximum protection from corrosion, etc. The bearing's inner ring should also be rotated every 6 months.

The specific conditions on an application such as exact hours of operation, temperature, moisture, speed and dirt govern the required lubrication cycle. A proper lubrication cycle can be determined by inspection of the flushed out lubricant during a trial period of operation. Add grease slowly. Use a sufficient volume of grease to purge the bearing seals of old lubricant. It is preferable to rotate bearings during relubrication where good safety practice permits.

Inspection of bearing installations at least every six months is recommended. Any unusual noise or vibration change should be immediately investigated. The suggested relubrication schedule in the following table is a general guide.

Table 6 - Lubrication Table

SHAFT SIZE inches	GREASE WT. REQUIRED (OZ.)		RECOMMENDED NUMBER OF MONTHS BETWEEN RELUBRICATION INTERVALS. (BASED ON 40 HR. WK.)					
	To Lubricate Rebuilt Units	To Relubricate Units	RPM					
			100	300	500	1000	1750	3000
1 15/16	.9	.2						
2 3/16	1.1	.2	8	5	3	1	1/2	---
2 3/8 – 2 7/16	1.5	.3						
2 11/16 – 2 15/16	2.8	.5						
3 3/16 – 3 7/16	3.7	.6						
3 11/16 – 3 15/16	6.9	1.1	6	4	2	1	1/2	---
4 3/16 – 4 7/16	8.4	1.5						
4 15/16	14.3	2.5	4	2	1	1/2	---	---

*Relubrication amounts and frequencies shown in the table are based on standard clearances, moderate loads, etc., which yield housing temperatures of 150° F or less. Lubrication practices indicate that the relubrication frequency should be doubled every 20° F above 150° F. Rexnord® Bearing Division cannot be held responsible for performance of individual batches of grease. Changes in lubricant specifications, performance, and lubricant guarantees are the responsibility of the lubricant manufacturer.

INTERNAL CLEARANCE ADJUSTMENT FOR HIGH SPEEDS

Before adjusting bearing clearance, please contact Rexnord® tech service at 866-REXNORD. To adjust bearing clearance for speeds greater than illustrated in Table 5, the threaded cover must be backed off. Using a grease pencil or marker, draw a line on the housing face at one of the notches on the cover. Using a screwdriver, back off the micro-lok screw and tab that locks the cover. Using a drift pin or screwdriver and hammer, drive the threaded cover in a counter-clockwise rotation until the next closest notch in the cover aligns with the mark on the housing. Check alignment of the micro-lok setscrew and tab to make sure it fits in the notch of the cover. If not, tap the threaded cover to align the notch. Re-tighten the micro-lok setscrew and tab. The bearing now has the increased clearance needed to run at the higher speeds and temperatures.

LIMITED WARRANTY - LIABILITY

A. IT IS EXPRESSLY AGREED THAT THE FOLLOWING WARRANTY IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESSLY IMPLIED OR STATUTORY, INCLUDING THOSE OF **MERCHANTABILITY** AND **FITNESS FOR A PARTICULAR PURPOSE**, AND OF ANY OTHER OBLIGATION OR LIABILITY ON OR PART OF ANY KIND OR NATURE WHATSOEVER.

No representative of ours has any authority to waive, alter, vary, or add to the terms hereof without prior approval in writing, to our customer, signed by an officer of our company. It is expressly agreed that the entire warranty given to the customer is embodied in this writing. This writing constitutes the final expression of the parties' agreement with respect to warranties, and that it is a complete and exclusive statement of the terms of the warranty.

We warrant to our customers that all Products manufactured by us will be free from defects in material and workmanship at the time of shipment to our customer for a period of **two (2) years** from the date of shipment. All warranty claims must be submitted to us within ten days of discovery of defects within the warranty period, or shall be deemed waived. As to Products or parts thereof that are proven to have been defective at the time of shipment, and that were not damaged in shipment, the sole and exclusive remedy shall be repair or replacement of the defective parts or repayment of the proportionate purchase price for such Products or parts, at our option. Replacement parts shall be shipped free of charge f.o.b. from our factory.

This warranty shall not apply to any Product which has been subject to misuse; misapplication, neglect (including but not limited to improper maintenance and storage); accident, improper installation, modification (including but not limited to use of unauthorized parts or attachments), adjustment, repair or lubrication. Misuse also includes, without implied limitation, deterioration in the Product or part caused by chemical action, wear caused by the presence of abrasive materials, and improper lubrication. Identifiable items manufactured by others but installed in or affixed to our Products are not warranted by us but, bear only those warranties, express or implied, given by the manufacturer of that item, if any.

Responsibility for system design to insure proper use and application of Rexnord Products within their published specifications and ratings rests solely with customer. This includes without implied limitation analysis of loads created by torsional vibrations within the entire system regardless of how induced.

B. It is expressly agreed that our liability for any damage arising out of or related to this transaction, or the use of our Products, whether in contract or in tort, is limited to the repair or replacement of the Products, or the parts thereof by us, or to a refund of the proportionate purchase price. We will not be liable for any other injury, loss, damage, or expense, whether direct or consequential, including but not limited to loss of use, income, profit, production, or increased cost of operation, or spoilage of or damage to material, arising in connection with the sale, installation, use of, inability to use, or the replacement of, or late delivery of, our Products.

C. It is also expressly agreed that any cause of action for breach of any warranty must be brought within one year from the date of the breach.

Rexnord Industries, LLC
Industrial Bearing Group
2400 Curtiss Street
Downers Grove, IL 60515

Series 200, 300, 3-U200, 3-Y200, 3-W200, U200, Y200, W200, U300 and Y300

Link-Belt® Ball Bearing Units Service Instructions B-BBU-22

IMPORTANT — Read Carefully

These instructions are provided to aid in the proper installation, operation and maintenance of Link-Belt Series 200, 300, 3-U200, 3-Y200, 3-W200, U200, Y200, W200, U300 and Y300 ball bearing units. They should be carefully read and followed. Failure to do so may result in unsatisfactory service as well as serious personal injury or property damage.

U200 series ball bearing units up to and including 2 $\frac{1}{16}$ inch shaft size are secured to the shaft with two setscrews threaded into the inner ring. Larger size U200 series and all U300 series units are equipped with spring locking collars having two setscrews. All W200, Y200, and Y300 series ball bearing units feature eccentric locking collars with one setscrew.

CAUTION

The reliability built in all Link-Belt bearings can be realized in service only when they are correctly selected, properly installed, protected and maintained.

The correct selection of bearings or mounted units requires that the magnitude and nature of all loads, speeds, alignment, mounting, operating requirements and maintenance be adequately considered. The selection of materials for and design of housings, shafting, fasteners, seals and accessories as well as provisions for installation and maintenance must follow good engineering principles.

When axial (thrust) loads are present, shaft collars or other means may be required to transmit the thrust from the shaft to the inner ring and prevent the bearing from slipping axially on the shaft.

Housings must be selected and installed with regard to the degree and direction of the forces that will occur. Housings should not be used under tension loads except with adequate safety factors. For this reason pillow blocks are best suited to withstand radial loads passing through the base. When heavy loads or shock loads are possible, it is most important to mount a unit so that the line of force passes directly into its base, or so that the unit is directly and substantially supported other than through its mounting bolts. Where the line of force falls outside the base, such as with horizontal or uplift loads on pillow blocks, serious housing and fastener deflection or failure may occur. These conditions may require designs using different materials, fasteners, mounting design, stop bars, etc., together with proper safety factors. When these conditions are unavoidable, Link-Belt Bearing Division should be consulted.

The following points of installation and operation are very important:

- A. **Cleanliness** — Keep dirt, water, and metal chips off all parts.
- B. **Careful Handling** — Hammer blows or improper use of force can damage precision parts.
- C. **Shaft Fits** — Bearings should have proper fits on the shafts to minimize fret wear. See installation instructions for shaft tolerances. When mounting bearings on a used or worn shaft, care must be taken to clean up the shaft journal and rebuild, as necessary, to the required tolerances. Never replace bearings on a shaft which is bent or which has been damaged or softened by a torch.

D. **Bolts** — Housing mounting bolt tightness is important to prevent the housing from shifting, and to adequately support loads.

E. **Collars and Setscrews** — Eccentric cam locking collars must be securely tightened in the direction of shaft rotation with the setscrew locked, and setscrews in spring locking collars or in setscrew mounted bearings must be properly torqued to prevent the shaft from slipping in the inner ring and to prevent loosening during operation.

F. **Free Rotation and Alignment** — Check for free rotation before machine start-up to assure that final alignment is proper. Although bearings are alignable in housings, they will not "self-align" in many cases and destructive moment loads may be imposed if initial installation alignment is not provided.

G. **Lubrication** — Units designed for relubrication must be adequately lubricated. A bearing not properly lubricated can run to destruction and possibly cause damage to other components. Add grease slowly. Rapid application may blow the seals and allow the grease to escape.

H. **Temperature** — Certain components of these units are made from materials which have temperature limits. Unless units are specifically made for high temperature applications, operating temperatures must not exceed 225°F for units with E, E2, N, U, or housing felt seals, or 275°F for units with H seals.

INSTALLATION

1. **Check Shaft** — Shafting must be clean, round, straight, free of burrs and nicks and of correct size.

For most operating conditions with low to moderate loads and speeds, the following shaft tolerances are recommended:

Shaft Diameter	Recommended Tolerance
1 $\frac{1}{2}$ " thru 2"	Nominal to minus .0005"
2 $\frac{1}{8}$ " thru 4"	Nominal to minus .0010"

Satisfactory performance may be obtained with increased shaft tolerances under some less severe conditions. Very difficult applications may require a light interference fit of the bearing on the shaft. Consult Link-Belt Bearing Division for recommendations.

2. **Shaft Preparation** — When frequent removal of bearings is anticipated, file flats on the shaft approximately $1\frac{1}{16}$ " deep under the setscrew locations. This provides for easy removal, as bearings will clear the burrs caused by correctly tightened setscrews.

3. **Lubricate Shaft & Bearing Bore** — Coat the shaft and bearing bore with grease or oil to facilitate assembly.

4. **Assemble on Shaft** — If it is necessary to tap or press units on the shaft, use a hardwood block, soft steel bar or tube against the end of the inner ring. DO NOT strike or exert pressure on housing or seals.

Setscrew Mounted Units — Back out all setscrews to clear the shaft and slide the units into position on the shaft.

Spring Locking Collar Units — Back out all collar setscrews to clear the shaft and slide the units into position on the shaft.

Eccentric Cam Locking Collar Units — Slide each unit into position on the shaft with the cam locking collar positioned for engagement with the inner ring cam.

5. **Preliminary Unit Location** — With both bearing units on the shaft, preliminarily locate the shaft in position. Lightly bolt the units to the mounting structure. SAE Grade 5 mounting bolts can be used. Bridge over housing mounting bolt slots with heavy flat washers. The use of heavy spring lockwashers under bolt heads and nuts is good practice to prevent loosening.

6. **Final Positioning** — Establish the final shaft position. Align the bearing units by hand, if required, or use a shaft or a rubber mallet. Securely bolt both

TABLE 1 — Inner Ring and Collar Setscrew Tightening Torque

Shaft Size (in.)	Seating Torque (in-lbs.)				
	W200	Y200	U200	U300	Y300
1 $\frac{1}{2}$ to 11/16	87 - 92	87 - 92	33 - 40	33 - 40	
3/4	87 - 92	87 - 92	87 - 92	33 - 40	
13/16 to 1	87 - 92	87 - 92	87 - 92	87 - 92	
1-1/16 to 1-3/16	165-185	165-185	87 - 92	165-185	290-325
1-1/4 to 1-7/16	290-325	290-325	165-185	165-185	290-325
1-1/2 to 1-9/16	290-325	290-325	165-185	165-185	
1-5/8 to 1-3/4	290-325	290-325	165-185	290-325	430-460
1-13/16 to 1-15/16	290-325	290-325	290-325	290-325	620-680
2 to 2-3/16		430-460	290-325	430-460	620-680
2-1/4 to 2-7/16		430-460	290-325	430-460	620-680
2-1/2 to 2-11/16			430-460	620-680	1225-1350
2-3/4 to 2-15/16			620-680	620-680	2125-2350
3 to 3-1/2			620-680	1225-1350	
3-9/16 to 3-3/4			1225-1350	1225-1350	
3-13/16 to 4			1225-1350	2125-2350	

Note: Satisfactory tightness may be obtained by using a standard hex wrench (50-52 Minimum RHN C) and tightening until a slight permanent twist is obtained in wrench for each setscrew.

Link-Belt® BEARING DIVISION

TABLE 2 — Grease Lubrication

OPERATING ENVIRONMENT		Bearing Operating Temperature	Greasing Interval (1)	Use Grease Equivalent to these (2)
Dirt Exposure	Moisture Exposure			
Slight	None	32°F to 120°F 120°F to 160°F 160°F to 200°F	6 months 2-4 months 1-2 months	High quality NLGI No. 2 multi-purpose ball bearing greases are generally satisfactory. Consultation with a reputable lubricant supplier is recommended.
Moderate to Heavy		32°F to 160°F 160°F to 200°F	1-4 weeks 1 week	
Slight to Heavy	Direct water splash or exposure to outdoor environment	32°F to 200°F	Daily to 1 week or as determined by inspection of installation	Mobil Oil Corp., Mobilith AW 2 Shell Oil Co., Alvania EP 2 Texaco Inc., Premium RB 2
Slight	None	-60°F to 32°F	Determined by inspection of installation	Shell Oil Co., Aeroshell 7A Mobil Oil Corp., Mobiltemp SHC 32
		above 200°F		Special lubrication and seals may be required.

(1) Frequency of greasing will vary, depending on the hours of operation, temperature and surrounding conditions.

(2) Do not use dibasic ester type lubricants without consulting Link-Belt Bearing Division, which can provide assistance in selection of lubricants given knowledge of operating conditions.

Link-Belt Bearing Division cannot be held responsible for performance of individual batches of grease. Changes in lubricant specifications, performance, and lubricant guarantees are the responsibility of the lubricant manufacturer.

LIMITED WARRANTY — LIABILITY

A. **IT IS EXPRESSLY AGREED THAT THE FOLLOWING WARRANTY IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING THOSE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND OF ANY OTHER OBLIGATION OR LIABILITY ON OUR PART OF ANY KIND OR NATURE WHATSOEVER.**

No representative of ours has any authority to waive, alter, vary or add to the terms hereof without prior approval in writing, to our customer, signed by an officer of our company. It is expressly agreed that the entire warranty given to the customer is embodied in this writing; that this writing constitutes the final expression of the parties' agreement with respect to warranties; and that it is complete and exclusive statement of the terms of the warranty.

We warrant to our customers that all Products manufactured by us will be free from defects in material and workmanship at the time of shipment to our customer for a period of one (1) year from the date of shipment. All warranty claims must be submitted to us within ten days of discovery of defects within the warranty period, or shall be deemed waived. As to Products or parts thereof that are proven to have been defective at the time of shipment, and that were not damaged in shipment, the sole and exclusive remedy shall be repair or replacement of the defective parts or repayment of the proportionate purchase price for such Products or parts, at our option. Replacement parts shall be shipped free of charge f.o.b. our factory.

This warranty shall not apply to any Product which has been subject to misuse; misapplication, neglect (including but not limited to improper maintenance and storage); accident; improper installation, modification (including but not limited to use of unauthorized parts or attachments), adjustment, repair or lubrication. Misuse also includes, without implied limitation, deterioration in the Product or part caused by chemical action, wear caused by the presence of abrasive materials, and improper lubrication. Identifiable items manufactured by others but installed in or affixed to our Products are not warranted by us but, bear only those warranties, express or implied, given by the manufacturer of that item, if any.

Responsibility for system design to insure proper use and application of Link-Belt Products within their published specifications and ratings rests solely with customer. This includes without implied limitation analysis of loads created by torsional vibrations within the entire system regardless of how induced.

B. It is expressly agreed that our liability for any damages arising out of or related to this transaction, or the use of our Products, whether in contract or in tort, is limited to the repair or replacement of the Products, or the parts thereof by us, or to a refund of the proportionate purchase price. We will not be liable for any other injury, loss, damage or expense, whether direct or consequential, including but not limited to loss of use, income, profit, production, or increased cost of operation, or spoilage of or damage to material, arising in connection with the sale, installation, use of, inability to use, or the replacement of, or late delivery of, our Products.

C. It is also expressly agreed that any cause of action for breach of any warranty must be brought within one year from the date of the breach.

Link-Belt Bearing Division
Rexnord Corporation
7601 Rockville Road, Box 85, Indianapolis, Indiana 46206

Copyright 1984, 1989 by Rexnord Corporation

Stock Carrying Distributors and Representatives Throughout the World

Key Industries

Air Handling

Housing

- 4-bolt pillow block
- 2 bearings – one housing secured with snap rings
- Perfect alignment
- Bolt-in-place

Shaft Sizes

- 15/16" - 2 7/16"

Accommodates Commercial Grade Shafting

- 1/2" – 2" nominal to -.003"
- 2 1/8" – 2 7/16" nominal to -.004"

Mounting Type

- Centrik-Lok
- Set-screw
- Eccentric Cam Locking Collar

General Bearing Information

- Races – precision-ground and super-finished
- Housings – powder-coated cast iron
- Grease – multi-purpose lithium complex
- Centrik-Lok CL: Black Oxide – corrosion resistance
- Standard seal – single lip contact with flingers (N)
- Optional seals available
- H – Labyrinth clearance seal
- E3 – Triple-lip seal

Link-Belt®

Fan and Blower Bearing Ball Bearing Unit

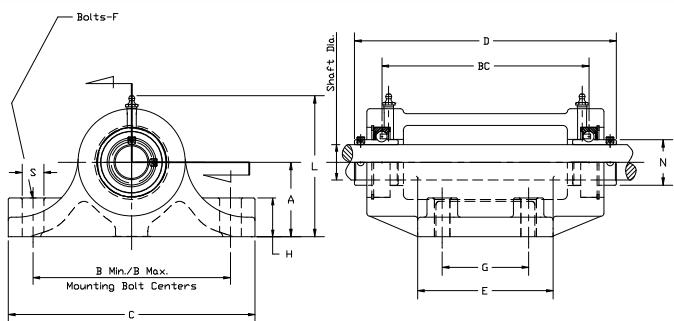
Rexnord proudly introduces a newly designed bearing, utilizing a high-speed design and characteristics essential for the air handling industry.

The Link-Belt Fan and Blower bearing is a standard duty bearing that is powder coated cast iron, to handle the harshest environments.

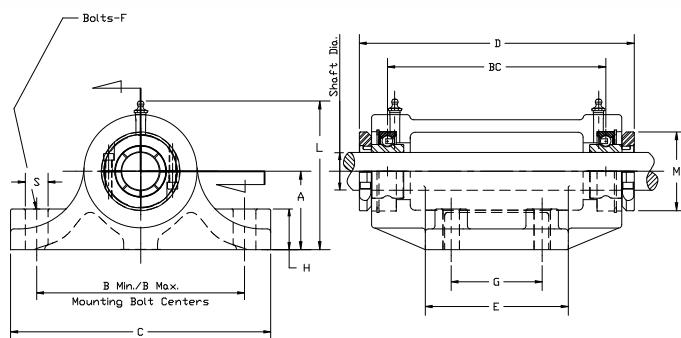
Accurate alignment of the double ball bearing design, along with super-finished raceways allows for high-speed operation.

Link-Belt's Centrik-Lok CL design features eight gripping tabs to solve the toughest shaft mounting problems. Its unique split collar design utilizes a high-strength socket head cap screw for secure and easy installation. The locking collar yields superior axial holding force. This innovative design provides 20% greater gripping force than the next best competitor.

Centrik-Lok Unit



REXNORD


Features and Benefits

Set-Screw

Centrik-Lok CL

Set-Screw Dimensions

Shaft Diameter	Part Number	A	Bmin	Bmax	BC	C	D	E	F	G	H	L	N	S	Wt. (lbs)	Insert Bearing Number	Dodge Equivalent	Fafnir DRNR
15/16	PPU215N	2 1/2	6 1/16	6 7/16	6 17/64	7 3/4	7 7/8	4 1/4	3/8	2 3/4	7/8	4 5/8	1.313	5/8	16	UB215XN	F&B-CC-015	1015KR
1-3/16	PPU219N	2 1/2	6 1/16	6 7/16	6 3/32	7 3/4	8	4 1/4	3/8	2 3/4	7/8	4 5/8	1.587	5/8	16	UB219XN	F&B-CC-103	1103KR
1-7/16	PPU223N	3	7 3/4	8 1/4	8 21/32	10	10 7/8	5 1/2	1/2	3 1/2	1	5 11/16	1.847	7/8	36	UB223XN	F&B-CC-107	1107KR
1-11/16	PPU227N	3	7 3/4	8 1/4	8 33/64	10	11	5 1/2	1/2	3 1/2	1	5 11/16	2.281	7/8	36	UB227XN	F&B-CC-111	1111KR
1-15/16	PPU231N	3 1/2	9 1/8	9 7/8	11 11/32	12	13 7/8	7	5/8	4 1/2	1 1/4	6 25/64	2.475	1 1/8	60	UB231XN	F&B-CC-115	1115KR
2-3/16	PPU235N	3 1/2	9 1/8	9 7/8	11 11/32	12	14 5/32	7	5/8	4 1/2	1 1/4	6 25/64	2.749	1 1/8	56	UB235XN	F&B-CC-203	1203KR
2-7/16	PPU239N	3 1/2	9 1/8	9 7/8	11 3/8	12	14 1/2	7	5/8	4 1/2	1 1/4	6 19/32	3.012	1 1/8	65	UB239XN	F&B-CC-207	NA

Centrik-Lok CL Dimensions

Shaft Diameter	Part Number	A	Bmin	Bmax	BC	C	D	E	F	G	H	L	M	S	Wt. (lbs)	Insert Bearing Number	Dodge Equivalent
15/16	PPCL215N	2 1/2	6 1/16	6 7/16	6 17/64	7 3/4	8	4 1/4	3/8	2 3/4	7/8	4 5/8	2 5/64	5/8	16	CLB215XN	F&B-DL-015
1-3/16	PPCL219N	2 1/2	6 1/16	6 7/16	6 3/32	7 3/4	7 7/8	4 1/4	3/8	2 3/4	7/8	4 5/8	2 15/32	5/8	16	CLB219XN	F&B-DL-103
1-7/16	PPCL223N	3	7 3/4	8 1/4	8 21/32	10	10 11/16	5 1/2	1/2	3 1/2	1	5 11/16	2 7/8	7/8	36	CLB223XN	F&B-DL-107
1-11/16	PPCL227N	3	7 3/4	8 1/4	8 33/64	10	10 59/64	5 1/2	1/2	3 1/2	1	5 11/16	3 17/64	7/8	36	CLB227XN	F&B-DL-111
1-15/16	PPCL231N	3 1/2	9 1/8	9 7/8	11 11/32	12	13 61/64	7	5/8	4 1/2	1 1/4	6 25/64	3 5/8	1 1/8	60	CLB231XN	F&B-DL-115
2-3/16	PPCL235N	3 1/2	9 1/8	9 7/8	11 11/32	12	14	7	5/8	4 1/2	1 1/4	6 25/64	3 29/32	1 1/8	56	CLB235XN	F&B-DL-203
2-7/16	PPCL239N	3 1/2	9 1/8	9 7/8	11 3/8	12	14 35/64	7	5/8	4 1/2	1 1/4	6 19/32	4 3/16	1 1/8	65	CLB239XN	F&B-DL-207

For more information about Rexnord products, programs, and services, contact your Rexnord Customer Focus Team today at 866-REXNORD (866-739-6673).

Rexnord Bearing Group
7601 Rockville Road, Indianapolis, IN 46214
P: 317-273-5500 • F: 317-273-5620
www.rexnord.com

Load Ratings, Speed Limits					
Shaft Diameter (in)	Std. Unit U200 Series Inserts P/N	Concentric Mount Unit Centrik-Lok CL CL200 Series Inserts P/N	Static Load Rating (lbs)	Basic Dynamic Load Rating (lbs)	Catalog Speed (rpm)
15/16	UB215XN	CLB215XN	1,760	3,150	6,800
1 3/16	UB219XN	CLB219XN	2,530	4,380	5,600
1 7/16	UB223XN	CLB223XN	3,440	5,780	4,800
1 15/16	UB231XN	CLB231XN	5,220	7,770	3,600
2 3/16	UB235XN	CLB235XN	6,570	9,760	3,200
2 7/16	UB239XN	CLB239XN	8,080	11,800	3,000

Note: The table values for Basic Dynamic Load rating should be reduced by 23% for U200 series and 15% for CLB200 series bearings. The table shows the load ratings for a single insert bearing. When considering loading on a housing, the internal support loads for each bearing position must be determined.